Kỹ Thuật - Công Nghệ - Công Nghệ Thông Tin, it, phầm mềm, website, web, mobile app, trí tuệ nhân tạo, blockchain, AI, machine learning - Công nghệ thông tin TRƯỜNG ĐẠI HỌC CÔNG NGHỆ KHOA CÔNG NGHỆ THÔNG TIN CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự do – Hạnh phúc ĐỀ CƯƠNG CHI TIẾT MÔN HỌC: HỌC MÁY THỐNG KÊ 1. Thông tin giảng viên STT Họ và tên Chức danh, học vị Địa chỉ liên hệ Điện thoạiEmail Ghi chú 1 Nguyễn Phương Thái TS. Khoa CNTT thainpvnu.edu.vn Phụ trách môn học 2 Lê Anh Cường PGS. TS. Khoa CNTT cuonglavnu.edu.vn Giảng viên 3 Nguyễn Văn Vinh TS. Khoa CNTT vinhnvvnu.edu.vn Giảng viên 2. Thông tin môn học - Tên môn học: Học máy - Mã môn học: INT6151 - Số tín chỉ: 02 - Phân bố giờ tín chỉ (LLThHTH): 3000 - Môn học tiền điều kiện (Nếu có): - Bộ môn, Khoa phụ trách môn học: Bộ môn KHMT, Khoa CNTT 3. Mục tiêu Môn học trang bị cho học viên các kiến thức và kỹ năng cơ bản và nâng cao về học máy. Học viên sau khi học có thể tự áp dụng các phương pháp học máy cơ bản để xây dựng các ứng dụng thực tế, phân tích, mô hình hóa dữ liệu. Học viên biết thử nghiệm trên dữ liệu thực và phân tích kết quả thu được một cách khoa học. Các bộ công cụ (thư viện) học máy thông dụng cũng được giới thiệu để học viên biết và sử dụng trong các bài tập lập trình của môn học. 4. Chuẩn đầu ra 4.1 Chuẩn đầu ra môn học th hiện trong chuẩn đầu ra c a ch ng tr nh - Hiểu và vận dụng được các kỹ thuật học máy để xây dựng ứng dụng thực tế. 4.2 Chuẩn đầu ra chi tiết cho từng nội dung c a môn học Sau khi hoàn thành môn học, học viên có thể thực hiện được: Về kiến thức: - Giải thích được các khái niệm: học máy giám sát, học máy không giám sát, phân lớp, phân cụm, khả năng khái quát hóa, hiện tượng dữ liệu thưa, hiện tượng over fitting; - Hiểu được các phương pháp K – láng giềng gần nhất, máy vector hỗ trợ (SVM), một số phương pháp phân cụm cơ bản; Về kỹ năng: - Sử dụng được bộ công cụ học máy trên dữ liệu cụ thể; - Thử nghiệm và đánh giá sử dụng các độ đo chuẩn, phân tích kết quả; 5. Tóm tắt môn học (khoảng 120 từ) Trong môn học này, trước tiên học viên sẽ được giới thiệu về các nguyên lý cơ bản trong học máy thống kê. Sau đó, các phương pháp phân lớp K – láng giềng gần nhất và máy vector hỗ trợ (SVM) sẽ được giới thiệu. Kế tiếp là chủ đề mô hình xác suất đồ thị, một tiếp cận rất được quan tâm gần đây và có sự phát triển mạnh mẽ về lý thuyết cũng như ứng dụng. Tiếp đến là chủ đề về phân cụm. Ngoài các chủ đề chính trên thì học viên cũng được tự chọn chủ đề đọc thêm, chẳng hạn mô hình hỗn hợp, thuật toán EM, các phương pháp rút gọn chiều dữ liệu, v.v. 6. Nội dung chi tiết môn học Môn học sẽ bao gồm các nội dung chính như sau: Chương 1. Các nguyên lý cơ bản của lý thuyết học thống kê 1.1 Mô hình tổng quát của học từ ví dụ. 1.2 Sai số và sai số thực nghiệm. 1.3 Nguyên lý quy nạp cực tiểu sai số thực nghiệm. 1.4 Phân lớp Bayes và hàm hồi quy. 1.5 Học không có giám sát. 1.6 Phương pháp maximum – likelihood. 1.7 Maximum – likelihood và cực tiểu lỗi tổng bình phương. 1.8 Phương pháp Bayes. 1.9 Đánh giá một giả thuyết. 1.10 Tính chất của phương pháp cực tiểu sai số thực nghiệm. 1.11 Sai số thực nghiệm điều chỉnh. 1.12 Định lý bữa ăn không miễn phí. Chương 2. Các phương pháp dựa vào bộ nhớ. 2.1 Phương pháp K - láng giềng gần nhất cho hồi quy. 2.2 Hồi quy địa phương. 2.3 Đánh giá mật độ xác su...
Trang 1TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
KHOA CÔNG NGHỆ THÔNG TIN
CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM
Độc lập – Tự do – Hạnh phúc
ĐỀ CƯƠNG CHI TIẾT MÔN HỌC: HỌC MÁY THỐNG KÊ
1 Thông tin giảng viên
STT Họ và tên
Chức danh, học
vị
Địa chỉ liên hệ Điện thoại/Email Ghi chú
1 Nguyễn Phương Thái TS Khoa CNTT thainp@vnu.edu.vn Phụ trách môn
học
2 Lê Anh Cường PGS TS Khoa CNTT cuongla@vnu.edu.vn Giảng viên
3 Nguyễn Văn Vinh TS Khoa CNTT vinhnv@vnu.edu.vn Giảng viên
2 Thông tin môn học
- Tên môn học: Học máy
- Mã môn học: INT6151
- Số tín chỉ: 02
- Phân bố giờ tín chỉ (LL/ThH/TH): 30/0/0
- Môn học tiền điều kiện (Nếu có):
- Bộ môn, Khoa phụ trách môn học: Bộ môn KHMT, Khoa CNTT
3 Mục tiêu
Môn học trang bị cho học viên các kiến thức và kỹ năng cơ bản và nâng cao về học máy Học
viên sau khi học có thể tự áp dụng các phương pháp học máy cơ bản để xây dựng các ứng dụng
thực tế, phân tích, mô hình hóa dữ liệu Học viên biết thử nghiệm trên dữ liệu thực và phân tích
kết quả thu được một cách khoa học Các bộ công cụ (thư viện) học máy thông dụng cũng được
giới thiệu để học viên biết và sử dụng trong các bài tập lập trình của môn học
4 Chuẩn đầu ra
4.1 Chuẩn đầu ra môn học th hiện trong chuẩn đầu ra c a ch ng tr nh
- Hiểu và vận dụng được các kỹ thuật học máy để xây dựng ứng dụng thực tế
4.2 Chuẩn đầu ra chi tiết cho từng nội dung c a môn học
Sau khi hoàn thành môn học, học viên có thể thực hiện được:
Về kiến thức:
- Giải thích được các khái niệm: học máy giám sát, học máy không giám sát, phân lớp, phân
cụm, khả năng khái quát hóa, hiện tượng dữ liệu thưa, hiện tượng over fitting;
Trang 2- Hiểu được các phương pháp K – láng giềng gần nhất, máy vector hỗ trợ (SVM), một số phương pháp phân cụm cơ bản;
Về kỹ năng:
- Sử dụng được bộ công cụ học máy trên dữ liệu cụ thể;
- Thử nghiệm và đánh giá sử dụng các độ đo chuẩn, phân tích kết quả;
5 Tóm tắt môn học (khoảng 120 từ)
Trong môn học này, trước tiên học viên sẽ được giới thiệu về các nguyên lý cơ bản trong học máy thống kê Sau đó, các phương pháp phân lớp K – láng giềng gần nhất và máy vector hỗ trợ (SVM) sẽ được giới thiệu Kế tiếp là chủ đề mô hình xác suất đồ thị, một tiếp cận rất được quan tâm gần đây và có sự phát triển mạnh mẽ về lý thuyết cũng như ứng dụng Tiếp đến là chủ đề về phân cụm Ngoài các chủ đề chính trên thì học viên cũng được tự chọn chủ đề đọc thêm, chẳng hạn mô hình hỗn hợp, thuật toán EM, các phương pháp rút gọn chiều dữ liệu, v.v
6 Nội dung chi tiết môn học
Môn học sẽ bao gồm các nội dung chính như sau:
Chương 1 Các nguyên lý cơ bản của lý thuyết học thống kê
1.1 Mô hình tổng quát của học từ ví dụ
1.2 Sai số và sai số thực nghiệm
1.3 Nguyên lý quy nạp cực tiểu sai số thực nghiệm
1.4 Phân lớp Bayes và hàm hồi quy
1.5 Học không có giám sát
1.6 Phương pháp maximum – likelihood
1.7 Maximum – likelihood và cực tiểu lỗi tổng bình phương
1.8 Phương pháp Bayes
1.9 Đánh giá một giả thuyết
1.10 Tính chất của phương pháp cực tiểu sai số thực nghiệm
1.11 Sai số thực nghiệm điều chỉnh
1.12 Định lý bữa ăn không miễn phí
Chương 2 Các phương pháp dựa vào bộ nhớ
2.1 Phương pháp K - láng giềng gần nhất cho hồi quy
2.2 Hồi quy địa phương
2.3 Đánh giá mật độ xác suất
2.4 Phương pháp K – láng giềng gần nhất cho phân lớp
2.5 Phân lớp Bayes ngây thơ
Chương 3 Máy vector hỗ trợ
3.1 Hàm nhân và phương pháp nhân
3.2 Phương pháp nhân tử Lagrange
3.3 Siêu phẳng tách tối ưu
3.4 Máy vector hỗ trợ
3.5 Siêu phẳng lề mềm
3.6 Vấn đề phân lớp đa lớp
Trang 33.7 Máy vector hỗ trợ cho hồi quy
Chương 4 Các mô hình xác suất đồ thị
4.1 Các luật xác suất cơ bản
4.2 Mô hình đồ thị định hướng
4.3 Học trong mạng Bayes
4.4 Mô hình đồ thị không định hướng
4.5 Đồ thị nhân tử
4.6 Suy diễn trong các mô hình đồ thị Thuật toán loại trừ biến
4.7 Thuật toán tổng – tích
4.8 Thuật toán max – tổng
Chương 5 Mô hình biến ẩn và thuật toán EM
5.1 Mô hình hỗn hợp
5.2 Maximum – likelihood cho phân phối hỗn hợp Gaus
5.3 Thuật toán EM
5.4 Áp dụng thuật toán EM cho hỗn hợp Gaus
Chương 6 Phân cụm
6.1 Cụm là gì?
6.2 Độ đo tương tự
6.3 Phân cum tối ưu
6.4 Phân cụm phân cấp
6.5 Phân cụm dựa vào mật độ
6.6 Phân cụm dựa vào mô hình
6.7 Phân cụm dựa vào đồ thị
6.8 Tính xác thực
Chương 7 Rút gọn chiều dữ liệu
7.1 Phân tích thành phần chính
7.2 Phân tích nhân tử
7.3 Phân tích thành phần độc lập
7.4 Phân tích nhân tử độc lập
7.5 Phân tích thành phần chính nhân
7 Học liệu
7.1 Học liệu bắt buộc:
1 Machine Learning: a Probabilistic Perspective Kevin Patrick Murphy MIT Press 2012
7.2 Tài liệu tham khảo:
2 Giáo trình nhận dạng mẫu Hoàng Xuân Huấn NXB ĐHQG Hà Nội, 2013
8 H nh thức tổ chức dạy học
8.1 Phân bổ lịch tr nh giảng dạy trong 1 học kỳ (15 tuần)
Trang 4H nh thức dạy Số tiết/tuần Từ tuần …đến tuần… Địa đi m
Lý thuyết 2 tiết/tuần Từ tuần 1 đến tuần 15
Thực hành
Tự học bắt buộc
8.2 Lịch tr nh giảng dạy cụ th
1 1 Các nguyên lý cơ bản của lý thuyết học thống kê 1
2
2 3 Các nguyên lý cơ bản của lý thuyết học thống kê 1
4
6
8
10
12
14
16
18
20
11 21 Học viên trình bày Bài tập lớn
Chương 5, 7 và các tài liệu GV cung cấp
22
12 23 Học viên trình bày Bài tập lớn
Chương 5, 7 và các tài liệu GV cung cấp
24
13 25 Học viên trình bày Bài tập lớn Chương 5, 7 và các tài liệu GV
cung cấp
26
14
27
Học viên trình bày Bài tập lớn
Chương 5, 7 và các tài liệu GV cung cấp
28
Trang 515 29 Ôn tập
30
9 Chính sách đối với môn học và các yêu cầu khác c a giảng viên
Môn học yêu cầu học viên lên lớp lý thuyết đầy đủ
10 Ph ng pháp, h nh thức ki m tra, đánh giá kết quả học tập môn học
10.1 Mục đích và trọng số kiểm tra, đánh giá
Bài tập lớn
Bài tập lớn + Viết tiểu luận + Trình bày Đánh giá khả năng áp dụng phương pháp học
máy, thử nghiệm, phân tích kết quả, viết và trình bày báo cáo
40%
10.2 Tiêu chí đánh giá
Đáp ứng được các tiêu chí đã nêu trong phần 4 Chuẩn đầu ra
10.3 Lịch thi và kiểm tra
Theo lịch thi của nhà trường đưa ra
Hà Nội, ngày ….tháng … năm 2014
Duyệt c a
Ban Giám hiệu
KT Ch nhiệm Khoa
P Ch nhiệm Khoa
Tr ng Ninh Thuận
Ch nhiệm Bộ môn
Lê Anh C ờng