1. Trang chủ
  2. » Luận Văn - Báo Cáo

skkn cấp tỉnh kỹ thuật xây dựng bộ câu hỏi theo định dạng thi tốt nghiệp thpt 2025 chương viii các qui tắc tính xác suất lớp 11 sách kết nối tri thức với cuộc sống

73 1 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Kỹ thuật xây dựng bộ câu hỏi theo định dạng thi tốt nghiệp THPT 2025 - Chương VIII: Các quy tắc tính xác suất - Lớp 11 - Sách kết nối tri thức với cuộc sống
Tác giả Lê Hải Lý
Trường học Trường THPT Hoằng Hóa
Chuyên ngành Toán học
Thể loại Sáng kiến kinh nghiệm
Năm xuất bản 2024
Thành phố Thanh Hóa
Định dạng
Số trang 73
Dung lượng 4,04 MB

Nội dung

Câu hỏi dùng pô tô cho học sinh Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập Phần 1:Câu hỏi trắc nghiệm nhiều lựa chọn Bài 29: Công thức cộng xác suất Phần 1:Câu hỏi trắc nghiệm

Trang 1

SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA

TRƯỜNG THPT HOẰNG HÓA 4

* * * -SÁNG KIẾN KINH NGHIỆM

KỸ THUẬT XÂY DỰNG BỘ CÂU HỎI THEO ĐỊNH DẠNG THI TỐT NGHIỆP THPT 2025 CHƯƠNG VIII: CÁC QUY TẮC TÍNH XÁC SUẤT LỚP 11- SÁCH KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

Người thực hiện: Lê Hải Lý

Chức vụ: Giáo viên

SKKN thuộc lĩnh vực : Toán học

THANH HÓA NĂM 2024

Trang 2

MỤC LỤC Trang

DANH MỤC SKKN ĐÃ ĐƯỢC HỘI ĐỒNG SKKN

NGÀNH GIÁO DỤC VÀ ĐÀO TẠO TỈNH XẾP LOẠI

11

I MỞ ĐẦU 1.1.LÍ DO CHỌN ĐỀ TÀI

Bắt đầu từ năm học 2023-2024 lớp 11 giảng dạy chương trình sách giáokhoa phổ thông 2028

Trang 3

Từ năm 2025, đổi mới nội dung, cấu trúc và định dạng câu hỏi đề thi tốtnghiệp THPT Học kì 2 năm học 2023- 2024, đề thi kiểm tra, đánh giá thườngxuyên và định kì cũng theo cấu trúc và định dạng câu hỏi mới này.

Hiện nay, bài tập trong sách giáo khoa và sách bài tập chưa phù hợp vớicấu trúc định dạng của đề thi mới Ngân hàng câu hỏi và tài liệu bồi dưỡng cònhạn chế chưa đáp ứng được nhu cầu học và thi của học sinh

Toán xác suất được chia thành 3 phần học ở lớp 10, lớp 11 và lớp 12 Vìvậy “Chương VIII: Các quy tắc tính xác suất - sách giáo khoa 11-kết nối tri thứcvới cuộc sống” đóng vai trò quan trọng trong chương trình môn Toán lớp 11 vàthi tốt nghiệp THPT 2025

Vì vậy tôi chọn đề tài sáng kiến kinh nghiệm “Kỹ thuật xây dựng bộ câu

hỏi theo định dạng thi tốt nghiệp THPT 2025 - Chương VIII: Các quy tắc tính xác suất – Lớp 11 – Sách kết nối tri thức với cuộc sống” để nghiên cứu.

1.2 MỤC ĐÍCH NGHIÊN CỨU

Tôi nghiên cứu đề tài sáng kiến này nhằm các mục đích sau:

- Tạo ra tài liệu dạy ôn tập chương đạo hàm cho học sinh lớp 11

- Giúp các em làm quen với định dạng mới của đề thi tốt nghiệp THPT

2025, thi kiểm tra đánh giá thường xuyên và định kì

- Nâng cao chất lượng giảng dạy môn Toán lớp 11

1.3 ĐỐI TƯỢNG NGHIÊN CỨU

Các dạng Toán chương “Đạo hàm”

Định dạng mới của đề thi tốt nghiệp THPT từ năm 2025

Kỹ thuật xây dựng hệ thống câu hỏi theo các mức độ nhận thức: Nhận biết, thông hiểu, vận dụng Theo 3 định dạng: Trắc nghiệm nhiều lựa chọn, đúng–sai, trả lời ngắn

Khả năng tiếp thu và kết quả thực hành của học sinh

1.4.PHƯƠNG PHÁP NGHIÊN CỨU

Để thực hiện tốt đề tài này tôi sử dụng các phương pháp nghiên cứu sau:Phương pháp nghiên cứu xây dựng cơ sở lý thuyết:

Phương pháp điều tra khảo sát thực tế, thu thập thông tin

Phương pháp thống kê xử lí số liệu

II NỘI DUNG 2.1 CƠ SỞ LÍ LUẬN CỦA SKKN

Căn cứ nội dung chương trình sách giáo khoa lớp 11 – bộ sách kết nối trithức với cuộc sống

Trang 4

Căn cứ cấu trúc, định dạng câu hỏi đề thi định kì và thi tốt nghiệp mônToán THPT bắt đầu từ năm 2025 gồm 3 phần:

Phần 1: Câu hỏi trắc nghiệm nhiều lựa chọn

Phần 2: Câu hỏi trắc nghiệm Đúng-Sai

Phần 3: Câu hỏi trắc nghiệm trả lời ngắn

2.2.THỰC TRẠNG VẤN ĐỀ TRƯỚC KHI ÁP DỤNG SKKN.

Năm học 2024 -2025 là năm đầu tiên học sinh lớp 11 học chương trìnhgiáo dục phổ thông 2018 và thi kiểm tra đánh giá theo cấu trúc và định dạng câuhỏi mới

Hiện nay, bài tập trong sách giáo khoa và sách bài tập chưa phù hợp vớicấu trúc định dạng của đề thi mới, đặc biệt dạng Đúng-Sai và trả lời ngắn giốngdạng của đề minh họa của Bộ là không có Ngân hàng câu hỏi và tài liệu bồidưỡng còn hạn chế chưa đáp ứng được nhu cầu học và thi của học sinh

Kết quả kì thi cuối học kì 2 của khối 10 và 11 trường tôi rất thấp Nguyênnhân là do:

- Học sinh còn lúng túng, chưa có kỹ năng làm các dạng câu hỏi Đúng-Sai

Giáo viên cần có một bộ câu hỏi trắc nghiệm theo định dạng mới để sửdụng dạy học

2.3 GIẢI QUYẾT VẤN ĐỀ

2.3.1 Nghiên cứu và học hỏi kỹ thuật biên soạn câu hỏi theo định dạng thi tốt nghiệp THPT 2025

Tôi đã sử dụng các nguồn tài liệu học tập và nghiên cứu sau:

- Nghiên cứu Đề minh họa môn Toán thi Tốt nghiệp THPT từ năm 2025của Bộ GD&ĐT

- Học tập trên kênh YouTube: OLM –Chuyển đổi số Giáo dục

Video1: Hướng dẫn xây dựng ngân hàng câu hỏi, ma trận đề, sinh đề theođịnh dạng đề thi tốt nghiệp THPT 2025

Trang 5

Video2: Tập huấn Biên Soạn các dạng câu hỏi theo định dạng THPT 2025của Bộ GD-ĐT.

Từ đó, tôi nắm được kỹ thuật biên soạn câu hỏi theo định dạng mới của

Bộ GD-ĐT và cách xây dựng ngân hàng câu hỏi

2.3.2 Nghiên cứu kỹ từng bài dạy của chương VIII- Các quy tắc tính xác suất

Trang 6

Nghiên cứu kỹ để bản thân tôi hiểu được sâu sắc mục đích, yêu cầu và nộidung cần đạt của bài dạy Từ đó, định hướng lựa chọn phương pháp giảng dạy,thiết kế bài dạy, biên soạn câu hỏi đủ dạng và phù hợp.

2.3.3 Xây dựng bảng trọng số câu hỏi chương VIII

Chương VIII- Các quy tắc tính xác suất

Số TT Tên bài dạy

Số câu hỏi Phần 1

(Câu hỏi nhiềulựa chọn)

Phần 2(Câu hỏi Đúng- Sai)

Phần 3(Câu hỏi trả lời ngắn)

12

20 Tổng 36 22 50

2.3.4 Tạo bố cục bộ câu hỏi : Chương VIII- Các quy tắc tính xác suất

Bố cục :

A Câu hỏi (dùng pô tô cho học sinh)

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Phần 1:Câu hỏi trắc nghiệm nhiều lựa chọn

Bài 29: Công thức cộng xác suất

Phần 1:Câu hỏi trắc nghiệm nhiều lựa chọn

Phần 2: Câu hỏi trắc nghiệm Đúng – Sai

Phần 3: Câu hỏi trắc nghiệm trả lời ngắn

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Phần 1:Câu hỏi trắc nghiệm nhiều lựa chọn

Phần 2: Câu hỏi trắc nghiệm Đúng – Sai

Phần 3:Câu hỏi trắc nghiệm trả lời ngắn

B Câu hỏi và đáp án ( dùng cho giáo viên)

Trang 7

(Cấu trúc tương tự )

2.3.5 Nội dung bộ câu hỏi và đề ôn tập chương.

Để phù hợp với quy định số trang của SKKN và tiện cho quý thầy cô sửdụng tôi để nội dung bộ câu hỏi phần phụ lục

2.3.6 Sử dụng bộ câu hỏi.

- Sử dụng làm bài tập cho học sinh luyện tại lớp và ở nhà

- Sử dụng ôn tập thi kiểm tra đánh giá

- Sử dụng làm nguồn đề thi

Giáo viên xem Video1: Hướng dẫn xây dựng ngân hàng câu hỏi, ma trận

đề, sinh đề theo định dạng đề thi tốt nghiệp THPT 2025

( kênh YouTube: OLM –Chuyển đổi số Giáo dục)

2.4 Hiệu quả của SKKN đối với hoạt động giáo dục, với bản thân, đồng nghiệp và nhà trường.

Khi áp dụng SKKN vào giảng dạy các lớp 11A3, 11A11 thu được kết quả như sau:

Trang 8

- Bản thân tôi có nguồn tài liệu cho học sinh học tập và rèn luyện đáp ứngnhu cầu thi kiểm tra đánh giá định kỳ phần xác suất

- Chuẩn bị cho học sinh nền tảng kiến thức để học tập tốt phần xác suất lớp

12 và thi tốt nghiệp THPT 2025

- Học sinh được làm quen với cấu trúc và định dạng câu hỏi của đề thi, đượcluyện tập nhiều, từ đó nâng cao kết quả thi và giảm thiểu tình trạng tô sai, tônhầm

Kết quả làm đề ôn tập cuối chương

Điểm < 5 Điểm 5-6,4 Điểm6,5-7,9 Điểm 8-8,9 Điểm 9- 10Lớp 11A3

Chọn khối

A

00%

45

00%

42 

819,0%

42 

1945,3%

42 

1535,7%

45

24,4%

45

1328,9%

45 

2146,7%

45 

920%

45 

Nhận xét: Kết quả khắc phục được tình trạng học sinh lúng túng khi làm và

tô đáp án, phổ điểm đẹp đánh giá sát được năng lực của học sinh

III KẾT LUẬN, KIẾN NGHỊ 3.1.Kết luận

Trang 9

SKKN đã đề ra kỹ thuật xây dựng bộ câu hỏi theo định dạng thi tốt nghiệpTHPT 2025 - Chương VIII: Các quy tắc tính xác suất – Sách giáo khoa lớp 11 –Kết nối tri thức với cuộc sống

Áp dụng sáng kiến đã khắc phục được những thực trạng khó khăn trướctrước khi áp dụng SKKN đã nêu trên mục 2.2

Kết quả áp dụng SKKN đem lại hiệu quả cao trong công tác giảng dạychương VIII, là nguồn tài liệu cho bản thân và đồng nghiệp sử dụng lâu dài

3.2 Kiến nghị

Các đồng chí trong tổ nên sử dụng SKKN để giảng dạy, đồng thời cácđồng chí sưu tầm và bổ sung thêm các bài tập mới để hệ thống bài tập vận dụngđược hoàn thiện hơn, làm tài liệu sử dụng chung cho cả tổ

Mở rộng nghiên cứu xây dựng thêm các chương khác của sách lớp 11, lớp

12 và lớp 10 Từ đó làm nguồn tài liệu chung cho cả tổ dùng lâu dài, làm ngânhàng tạo đề thi nhằm nâng cao chất lượng giáo dục môn Toán nói chung củatoàn trường; phát triển năng lực Toán học của học sinh, đáp ứng nhu cầu thikiểm tra đánh giá và thi tốt nghiệp THPT từ năm 2025

Tôi xin trân thành cảm ơn!

XÁC NHẬN CỦA

THỦ TRƯỞNG ĐƠN VỊ

Thanh Hóa, ngày 25 tháng 5 năm 2024

Tôi xin cam đoan đây là SKKN củamình viết, không sao chép nội dung củangười khác

Lê Hải Lý

TÀI LIỆU THAM KHẢO

1 SGK Toán 11- kết nối tri thức với cuộc sống

Trang 10

2 Kênh yotobe: OLM- Giải pháp chuyển đổi số dành cho giáo viên

3 Đề minh Họa thi tốt nghiệp THPT 2025 của Bộ GD-ĐT

4.Sách Hướng dẫn ôn thi tốt nghiệp THPT 2025 – môn Toán

Nhà xuất bản Đại Học Quốc Gia Hà Nội

Chủ biên: Đỗ Đức Thái

DANH MỤC SKKN ĐÃ ĐƯỢC HỘI ĐỒNG SKKN NGÀNH GIÁO DỤC VÀ ĐÀO TẠO TỈNH XẾP LOẠI

Trang 11

Họ tên: Lê Hải Lý

Chức vụ và đơn vị công tác: Giáo viên trường THPT Hoằng Hóa 4.

TT Tên đề tài SKKN Cấp đánh

giá xếp loại

Kết quả đánh giá xếp loại

Năm đánh giá xếp loại

1 Xây dựng bộ câu hỏi trắc

nghiệm chương 1,chương 2 đại

Giáo dục đạo đức học sinh

thông qua buổi ngoại khóa

Giải pháp giúp học sinh lớp

11A2 tự học môn Toán tại nhà

trong thời gian nghỉ dịch covid

Một số kinh nghiệm giảng dạy

bài “Tìm hiểu một số kiến thức

về tài chính” Toán 10- sách kết

nối tri thức với cuộc sống

Sở GD&ĐT C 2023

Trang 12

PHỤ LỤC

BỘ CÂU HỎI

THEO ĐỊNH DẠNG THI TỐT NGHIỆP THPT 2025 CHƯƠNG VIII: CÁC QUY TẮC TÍNH XÁC SUẤT LỚP 11- SÁCH KẾT NỐI TRI THỨC VỚI CUỘC SỐNG

A CÂU HỎI ( DÙNG PÔ TÔ CHO HỌC SINH )

B CÂU HỎI VÀ ĐÁP ÁN (DÙNG CHO GIÁO VIÊN)

A CÂU HỎI ( DÙNG PÔ TÔ CHO HỌC SINH)

Trang 13

CHƯƠNG VIII: CÁC QUY TẮC TÍNH XÁC SUẤT BÀI 28 BIẾN CỐ HỢP, BIẾN CỐ GIAO, BIẾN CỐ ĐỘC LẬP

Phần 1: Câu trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi chọn một phương án đúng.

Câu 1: Cho hai biến cố AB. Biến cố “A hoặc B xảy ra” được gọi là

A Biến cố giao của AB. B Biến cố đối của A.

C Biến cố hợp của AB. D Biến cố đối của B.

Câu 2: Cho hai biến cố AB. Biến cố “ Cả AB đều xảy ra” được gọi là

A Biến cố giao của AB. B Biến cố đối của A.

C Biến cố hợp của AB. D Biến cố đối của B.

Câu 3: Cho hai biến cố AB. Nếu việc xảy ra hay không xảy ra của biến cốnày không ảnh hưởng đến xác suất xảy ra của biến cố kia thì hai biến cố AB

được gọi là

A Xung khắc với nhau B Biến cố đối của nhau.

C Độc lập với nhau D Không giao với nhau Câu 4: Cho AB là hai biến cố độc lập Mệnh đề nào dưới đây đúng?

A Hai biến cố AB không độc lập B Hai biến cố AB không độc lập

C Hai biến cố AB độc lập D Hai biến cố AA B độc lập

Câu 5: Câu lạc bộ cờ vua của một trường THPT có 20 thành viên ở ba khối,trong đó khối 10 có 3 nam và 2 nữ, khối 11 có 4 nam và 4 nữ, khối 12 có 5 nam

và 2 nữ Giáo viên chọn ngẫu nhiên một thành viên của câu lạc bộ để tham giathi đấu giao hữu Xét các biến cố sau:

A “Thành viên được chọn là học sinh khối 11 và là học sinh nam”.

B “Thành viên được chọn là học sinh khối 11 và không là học sinh nam”.

C “Thành viên được chọn là học sinh khối 11 hoặc là học sinh nam”.

D “Thành viên được chọn không là học sinh khối 11 hoặc là học sinh nam”.

Trang 14

Câu 6: Chọn ngẫu nhiên một số tự nhiên từ 1 đến 20 Xét các biến cố A:“Sốđược chọn chia hết cho 3”; B:“Số được chọn chia hết cho 4” Khi đó biến cố

A “Số ghi trên thẻ được lấy là số chia hết cho 8”.

B “Số ghi trên thẻ được lấy là số chia hết cho 2”.

C “Số ghi trên thẻ được lấy là số chia hết cho 6”.

D “Số ghi trên thẻ được lấy là số chia hết cho 4”.

Câu 8: Hai xạ thủ tham gia thi đấu bắn súng, mỗi người bắn vào bia của mìnhmột viên đạn một cách độc lập với nhau Gọi AB lần lượt là các biến cố

“Người thứ nhất bắn trúng bia”; “Người thứ hai bắn trúng bia” Khẳng định nàosau đây đúng?

A Hai biến cố AB bằng nhau

B Hai biến cố AB đối nhau

C Hai biến cố AB độc lập với nhau

D Hai biến cố AB không độc lập với nhau

Câu 9: Có hai hộp đựng bi Hộp thứ nhất có 3 viên bi đỏ và 4 viên bi xanh.Hộp thứ hai có 5 viên bi đỏ và 3 viên bi xanh Lấy ngẫu nhiên mỗi hộp một viên

bi Xét các biến cố sau:

A Hai biến cố độc lập với nhau.

B Hai biến cố bằng nhau.

C Hai biến cố đối của nhau.

D Hai biến cố xung khắc.

Trang 15

BÀI 29 CÔNG THỨC CỘNG XÁC SUẤT

Phần 1: Câu trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi chọn một phương án đúng

Câu 1: Cho A, B là hai biến cố xung khắc Đẳng thức nào sau đây đúng?

A Độc lập B Không xung khắc C Xung khắc D Không rõ.

Câu 3: Cho A B, là hai biến cố xung khắc P A   15, P A B   13 Tính P B 

Câu 5: Cho A B, là hai biến cố Biết P = 1

2, P = 3

4 P = 1

4 Biến cố A B làbiến cố

A Có xác suất bằng 1

4 B Chắc chắn.

C Không xảy ra D Có xác suất bằng 1

8

Câu 1: Một hộp đựng 4 viên bi xanh, 3 viên bi đỏ và 2 viên bi vàng Chọn

ngẫu nhiên 2 viên bi Tính xác suất để chọn được 2 viên bi khác màu

Câu 6: Một hộp đựng 40 viên bi trong đó có 20 viên bi đỏ, 10 viên bi xanh, 6

viên bi vàng,4 viên bi trắng Lấy ngẫu nhiên hai bi, tính xác suất biến

cố A: “hai viên bi cùng màu”

Trang 16

Câu 7: Một hộp đựng 10 viên bi trong đó có 4 viên bi đỏ, 3 viên bi xanh, 2

viên bi vàng, 1 viên bi trắng Lấy ngẫu nhiên 2 bi tính xác suất biến cốA: “2 viên bi cùng màu”

Câu 8: Một lớp có 60 sinh viên trong đó 40 sinh viên học tiếng Anh, 30 sinh

viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp.Chọn ngẫu nhiên một sinh viên Tính xác suất của các biến cố sinh viênđược chọn không học tiếng Anh và tiếng Pháp

Câu 9: Cho tập X 1, 2,3, 4,5 Viết ngẫu nhiên lên bảng hai số tự nhiên, mỗi

số gồm 3 chữ số đôi một khác nhau thuộc tập X Tính xác suất để trong

Câu 10: Gieo hai hột súc sắc màu xanh và trắng Gọi x là số nút hiện ra trên

hột xanh và y là số nút hiện ra trên hột trắng Gọi A là biến cố x y  

và B là biến cố 5 x y 8    Khi đó P A B   có giá trị là:

A 11

Câu 11: Gieo hai con súc sắc xanh, đỏ Gọi x, y là số nút xuất hiện ra hột xanh

và đỏ Gọi A, B là hai biến cố sau đây.

Câu 12:Trong một lớp 10 có 50 học sinh Khi đăng ký cho học phụ đạo thì có

38 học sinh đăng ký học Toán, 30 học sinh đăng ký học Lý, 25 học sinhđăng ký học cả Toán và Lý Nếu chọ ngẫu nhiên 1 học sinh của lớp đóthì xác suất để em này không đăng ký học phụ đạo môn nào cả là baonhiêu

A 0,07 B 0,14 C 0,43 D Kết quả khác

Trang 17

Phần 2: Câu trắc nghiệm Đúng – Sai

Trong mỗi ý a), b), c), d) ở mỗi câu, học sinh chọn đúng hoặc sai.

Câu 2 Ba người cùng bắn vào 1 bia Xác suất bắn trúng đích của người thứ

nhất, thứ hai, thứ ba lần lượt là 0,7;0,6;0,8 Khi đó:

a)Gọi A là biến cố "người thứ nhất bắn trúng đích"  P A( ) 0,7; ( ) 0,7  P A  b) Gọi B là biến cố "người thứ hai bắn trúng đích"  P B( ) 0,6; ( ) 0, 4  P B  c) Gọi C là biến cố "người thứ ba bắn trúng đích"  P C( ) 0,8; ( ) 0, 2  P C

d) Xác suất để có đúng 2 người bắn trúng đích là 0, 452

Câu 3 Cả hai xạ thủ cùng bắn vào bia Xác suất người thứ nhất bắn trúng bia

là 0,8 ; người thứ hai bắn trúng bia là 0,7 Khi đó xác suất để:

a) Người thứ nhất bắn trúng và người thứ hai bắng không trúng bia bằng 0,14

b) Người thứ nhất bắn không trúng và người thứ hai bắn trúng bia bằng 0,14

c) Hai người đều bắn trúng bia bằng 0,56

d) Có ít nhất một người bắn trúng bia bằng 0,94

Câu 4 Túi X chứa ba viên bi trắng và hai viên bi đỏ Túi Y chứa một màu trắng và ba màu đỏ viên bi Người ta chọn ngẫu nhiên mỗi hộp và lấy ra hai viên

bi Các mệnh đề sau đúng hay sai?

a) Gọi A là biến cố "Lấy được viên bi màu trắng từ túi X " khi đó: ( ) 3

d) Xác suất để lấy được hai viên bi cùng màu bằng ( ) 7 .

15

P X 

Trang 18

Câu 5 Trên một giá sách có 15 quyển sách, trong đó có 5 quyển văn nghệ Lấy

ngẫu nhiên từ đó ba quyển Khi đó: Các mệnh đề sau đúng hay sai?

a) Xác suất để lấy ngẫu nhiên 3 quyển trong đó có 1 cuốn văn nghệ là: 45

91 b) Xác suất để lấy ngẫu nhiên 3 quyển trong đó có 2 cuốn văn nghệ là: 14

91.c) Xác suất để lấy ngẫu nhiên 3 quyển trong đó có 3 cuốn văn nghệ là: 2

9 d) Xác suất sao cho có ít nhất một quyển văn nghệ là: 67

91

Câu 6 Một hộp đựng 10 tấm thẻ được đánh số từ 1 đến 10 , hai tấm thẻ khác

nhau đánh hai số khác nhau Rút ngẫu nhiên một tấm thẻ, khi đó:

Các mệnh đề sau đúng hay sai?

a) Gọi A là biến cố: "Rút được thẻ đánh số chia hết cho 2", suy ra n A   5

b) Gọi A là biến cố: "Rút được thẻ đánh số chia hết cho 2", suy ra ( ) 1

P B  d) Xác suất để rút được thẻ đánh số chia hết cho 2 hoặc 7 bằng 3

7

Câu 7 Một hộp đựng 20 tấm thẻ được đánh số từ 1 đến 20 , hai tấm thẻ khác

nhau đánh hai số khác nhau Rút ngẫu nhiên một tấm thẻ, gọi A là biến cố: "Rút được thẻ đánh số chia hết cho 2", gọi B là biến cố rút được thẻ đánh số chia hết cho 3 Khi đó: Các mệnh đề sau đúng hay sai?

Câu 8 Chọn ngẫu nhiên một vé số có năm chữ số được lập từ các chữ số từ 0

đển 9 Gọi A là biến cố: "Lấy được vé không có chữ số 2 " và B : "Lấy được vé

số không có chữ số 7" Các mệnh đề sau đúng hay sai?

Trang 19

Câu 9 Một lớp học có 40 học sinh, trong đó có 18 học sinh tham gia môn

bóng đá và 10 học sinh tham gia môn bóng chuyền, trong đó có 6 học sinh tham gia cả hai môn bóng đá và bóng chuyền Thầy giáo chọn ngẫu nhiên một học sinh từ lớp học để làm nhiệm vụ đặc biệt, gọi A là biến cố: "Chọn được một họcsinh tham gia môn bóng đá", B là biến cố: "Chọn được một học sinh tham gia môn bóng chuyền" Khi đó: Các mệnh đề sau đúng hay sai?

Câu 10 Một hộp đựng 4 viên bi màu xanh, 3 viên bi màu đỏ và 2 viên bi màu

vàng Chọn ngẫu nhiên 2 viên bi từ hộp trên Gọi A là biến cố: "Chọn được 2 viên bi màu xanh" B là biến cố "Chọ được 2 viên bi màu đỏ", C là biến cố

"Chọn được 2 viên bi màu vàng" Khi đó: Các mệnh đề sau đúng hay sai?

Phần 3: Câu trắc nghiệm trả lời ngắn

Câu 1. Người ta thăm dò một số lượng người hâm mộ bóng đá tại một thànhphố, nơi có hai đội bóng đá XY cùng thi đấu giải vô địch quốc gia Biếtrằng số lượng người hâm mộ đội bóng đá X là 22%, số lượng người hâm mộđội bóng đá Y là 39%, trong số đó có 7% người nói rằng họ hâm mộ cả hai độibóng trên Chọn ngẫu nhiên một người hâm mộ trong số những người được hỏi,tính xác suất để chọn được người không hâm mộ đội nào trong hai đội bóng đá

XY

Câu 2. Một khu phố có 50 hộ gia đình trong đó có 18 hộ nuôi chó, 16 hộ nuôimèo và 7 hộ nuôi cả chó và mèo Chọn ngẫu nhiên một hộ trong khu phố trên,tính xác suất để:

a) Hộ đó nuôi chó hoặc nuôi mèo b) Hộ đó không nuôi cả chó và mèo

Trang 20

Câu 3. Một hộp có chứa một số quả cầu gồm bốn màu xanh, vàng, đỏ, trắng(các quả cầu cùng màu thì khác nhau về bán kính) Lấy ngẫu nhiên một quả cầu

từ hộp, biết xác suất để lấy được một quả cầu màu xanh bằng 1

4, xác suất để lấyđược một quả cầu màu vàng bằng 1

3 Tính xác suất để lấy được một quả cầuxanh hoặc một quả cầu vàng

Câu 4. Hai bạn Chiến và Công cùng chơi cờ với nhau Trong một ván cờ, xácsuất Chiến thắng Công là 0,3 và xác suất để Công thắng Chiến là 0,4 Hai bạndừng chơi khi có người thắng, người thua Tính xác suất để hai bạn dừng chơisau hai ván cờ

Câu 5. Tại một trường trung học phổ thông X, có 12% học sinh học giỏi mônTiếng Anh, 35% học sinh học giỏi môn Toán và 8% học sinh học giỏi cả haimôn Toán, Tiếng Anh Chọn ngẫu nhiên một học sinh từ trường X, tính xácsuất để chọn được một học sinh không giỏi môn nào trong hai môn Toán, TiếngAnh

Câu 6. Ba xạ thủ lần lượt bắn vào một bia Xác suất để xạ thủ thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8;0,6;0,5 Tính xác suất để có đúng hai ngườibắn trúng đích

Câu 7. Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lờitrong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm Một thísinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu Tínhxác suất để thí sinh đó được 6 điểm

Câu 8. Một hộp đựng nhiều quả cầu với nhiều màu sắc khác nhau Người talấy ngẫu nhiên một quả cầu từ hộp đó Biết xác suất để lấy được một quả cầumàu xanh từ hộp bằng 1

5, xác suất để lấy được một quả cầu màu đỏ từ hộp bằng

A : "Cả hai tấm thẻ đều đánh số chẵn", B : "Chỉ có một tấm thẻ đánh số chẵn",

C : "Tích hai số đánh trên hai tấm thẻ là một số chẵn"

Tính xác suất để biến cố C xảy ra

Câu 10.Một máy bay có 5 động cơ, trong đó cánh phải có 3 động cơ, cánh trái

có 2 động cơ Xác suất bị trục trặc của mỗi động cơ cánh phải là 0,1 ; xác suất bịtrục trặc mỗi động cơ cánh trái là 0,05 Biết rằng các động cơ hoạt động đợclập Tính xác suất để có đúng 4 động cơ máy bay bị hỏng

Trang 21

Câu 11.Một hộp có chứa 5 bi xanh và 4 bi đỏ có cùng kích thước và khốilượng Lấy ra ngẫu nhiên đồng thời 3 viên bi từ hộp Gọi A là biến cố "Ba viên

bi lấy ra đều có màu đỏ", B là biến cố "Ba viên bi lấy ra đều có màu xanh"Tính số kết quả thuận lợi cho biến cố A B ?

Câu 12.Một đội tình nguyện gồm 6 học sinh khối 11, và 8 học sinh khối 12.Chọn ra ngẫu nhiên 2 người trong đội Tính xác suất của biến cố "Cả hai ngườiđược chọn học cùng một khối"

Câu 13.Ở ruồi giấm, tính trạng cánh dài là tính trạng trội hoàn toàn so với tínhtrạng cánh ngắn Cho ruồi giấm cái cánh dài thuần chủng giao phối với ruồigiấm đực cánh ngắn thuần chủng thu được F1 toàn ruồi giấm cánh dài Tiếp tụccho F1 giao phối với nhau và thu được các con ruồi giấm F2 Lần lượt lấy ngẫunhiên hai con ruồi giấm F2, tính xác suất của biến cố "Có đúng một con ruồigiấm cánh dài trong hai con được lấy ra"

Câu 14.Rút ngẫu nhiên 1 lá bài từ bộ bài tây 52 lá Tính xác suất của biến cố

"Lá bài được chọn có màu đen hoặc lá đó có số chia hết cho 3"

Câu 15.Một hộp có 4 bi xanh, 3 bi đỏ và 5 bi vàng có cùng kích thước và cùngkhối lượng Chọn ngẫu nhiên 2 viên bi từ hộp Tính xác suất của các biến cốa) Hai bi lấy ra có cùng màu

b) Hai bi lấy ra khác màu

Câu 16.Cho hai biến cố AB độc lập với nhau

Biết P A ( ) 0, 4 và P B ( ) 0, 45 Tính xác suất của biến cố A B

Câu 17.Cho hai biến cố AB độc lập với nhau

Biết P A ( ) 0, 45 và P A B(  ) 0,65  Tính xác suất của biến cố B

Câu 18.Một hộp có 20 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 20 Lấy ngẫu nhiên đồng thời hai thẻ từ hộp Tính xác suất của các biến cố:

a) "Tích các số ghi trên 2 thẻ lấy ra là số lẻ"

b) "Tích các số ghi trên 2 thẻ lấy ra là số chia hết cho 3"

Câu 19.Gieo đồng thời hai con xúc xắc cân đối và đồng chất Gọi A là biến cố

"tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 10 ” Tính xác suất của biến cố A

Câu 20.Cho hai biến cố AB độc lập với nhau

Biết P A ( ) 0,5 và P AB ( ) 0,15 Tính xác suất của biến cố A B

Câu 21.Cho hai biến cố AB độc lập với nhau

Biết P B ( ) 0,3 và P A B(  ) 0,6  Tính xác suất của biến cố A

Câu 22.Một lô hàng có 40 sản phẩm trong đó có 5 sản phẩm không đạt chấtlượng số còn lại chất lượng tốt Lấy ra ngẫu nhiên 4 sản phẩm để kiểm tra Tính

Trang 22

xác suất của biến cố A "Lấy ra được không quá 2 sản phẩm không đạt chấtlượng".

Câu 23.Một nhóm học sinh gồm 6 nam và 6 nữ Chọn ra ngẫu nhiên 5 bạn Tính xác suất để 5 bạn được chọn có cả nam và nữ trong đó nam ít hơn nữ

Câu 24.Chọn ngẫu nhiên 2 đỉnh trong số 20 đỉnh của một đa giác đều 20 cạnh.Tính xác suất của biến cố A "2 đỉnh được chọn là đường chéo của đa giác"

Câu 25.Chọn ngẫu nhiên một số tự nhiên từ tập hợp các số tự nhiên có 4 chữ

số Tính xác suất của biến cố A "Số được chọn chia hết cho 3 hoặc 5"

Câu 26.Một chiếc hộp có chín thẻ đánh số từ 11 đến 99 Rút ngẫu nhiên hai thẻrồi nhân hai số ghi trên hai thẻ với nhau Tính xác suất để kết quả nhận được làmột số chẵn

Câu 27.Một hộp có 15 quả cầu khác nhau trong đó có 6 quả cầu xanh, 9 quảcầu đỏ Lấy ra 3 quả cầu tuỳ ý Tính xác suất trong 3 quả cầu được chọn có 2quả cầu xanh và 1 quả cầu đỏ

Câu 28.Một tổ 10 người sẽ được chơi hai môn thể thao là cầu lông và bóngbàn Có 5 bạn đăng ký chơi cầu lông, 4 bạn đăng ký chơi bóng bàn, có 2 bạnđăng ký chơi cả hai môn Hỏi xác suất chọn được một bạn đăng ký chơi thể thao

b) Đi bè vượt thác nhưng không chơi dù lượn

BÀI 30: CÔNG THỨC NHÂN XÁC SUẤT CHO HAI BIẾN CỐ ĐỘC LẬP Phần 1: Câu trắc nghiệm nhiều phương án lựa chọn

Câu 1: Cho A, Blà hai biến cố độc lập Biết P A   14, P A B 19 Tính

Trang 23

Câu 4: Có hai hộp đựng bi Hộp I có 9 viên bi được đánh số 1, 2,  , 9 Lấy

ngẫu nhiên mỗi hộp một viên bi Biết rằng xác suất để lấy được viên bimang số chẵn ở hộp II là 3

10 Xác suất để lấy được cả hai viên bi mang

Câu 5: Hai người độc lập nhau ném bóng vào rổ Mỗi người ném vào rổ của

mình một quả bóng Biết rằng xác suất ném bóng trúng vào rổ của từngngười tương ứng là 15 và 27 Gọi A là biến cố: “Cả hai cùng ném bóngtrúng vào rổ” Khi đó, xác suất của biến cố A là bao nhiêu?

A P A 1235 B P A  251 C P A  494 D P A  352

Câu 6: Xác suất sinh con trai trong mỗi lần sinh là0,51 Tìm các suất sao cho 3

lần sinh có ít nhất một con trai

A P A   0,88 B P A   0, 23 C P A  0, 78.D P A   0,32

Câu 7: Hai cầu thủ sút phạt đền Mỗi người đá 1 lần với xác suất làm bàm

tương ứng là 0,8 và 0,7 Tính xác suất để có ít nhất 1cầu thủ làm bàn

A P X   0, 42 B P X   0,94 C P X   0, 234 D P X   0,9

Câu 8: Một cặp vợ chồng mong muốn sinh bằng đựơc sinh con trai Xác suất

sinh được con trai trong một lần sinh là 0,51 Tìm xác suất sao cho cặp

vợ chồng đó mong muốn sinh được con trai ở lần sinh thứ 2

A P C( ) 0, 24  B P C( ) 0, 299  C P C( ) 0, 24239  D P C( ) 0, 2499 

Câu 9: Ba người cùng bắn vào 1 bia Xác suất để người thứ nhất, thứ hai,thứ ba

bắn trúng đích lần lượt là 0,8; 0, 6;0,5 Xác suất để có đúng 2 ngườibắn trúng đích bằng:

A 0, 24 B 0,96 C 0, 46 D 0,92

Câu 10:Gieo một con súc sấc cân đối và đồng chất hai lần Tính xác suất sao

cho tổng só chấm trong hai lần gieo là số chẵn

Câu 11:Một xạ thủ bắn bia Biết rằng xác suất bắn trúng vòng tròn 10 là 0,2;

vòng 9 là 0,25 và vòng 8 là 0,15 Nếu trúng vòng k thì được k điểm.Giả sử xạ thủ đó bắn ba phát súng một cách độc lập Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm Xác suất để xạ thủ này đạt loại giỏi là

Trang 24

Câu 12:Ba người xạ thủ A , A , A 1 2 3 độc lập với nhau cùng nổ súng bắn vào mục

tiêu Biết rằng xác suất bắn trúng mục tiêu của A , A , A 1 2 3 tương ứng là0,7; 0,6 và 0,5 Tính xác suất để có ít nhất một xạ thủ bắn trúng

Câu 13:Xác suất bắn trúng mục tiêu của một vận động viên khi bắn một viên

đạn là 0,6 Người đó bắn hai viên đạn một cách độc lập Xác suất đểmột viên trúng mục tiêu và một viên trượt mục tiêu là

Câu 14:Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập

với nhau Xác suất bắn trúng bia của hai xạ thủ lần lượt là 1

2và 1

3 Tínhxác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia

Câu 15:Ba xạ thủ A1, A2, A3 độc lập với nhau cùng nổ súng bắn vào mục tiêu

Biết rằng xác suất bắn trúng mục tiêu của A1, A2, A3 tương ứng là 0, 7;

0, 6 và 0,5 Tính xác suất để có ít nhất một xạ thủ bắn trúng

A 0, 45 B 0, 21 C 0,75 D 0,94

Phần 2: Câu trắc nghiệm Đúng – Sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Câu 1 Cho AB là hai biến cố độc lập với nhau, biết P A( ) 0, 2; ( ) 0,3  P B  Khi đó:

Câu 3 Một người vừa gieo một con xúc xắc để ghi lại số chấm xuất hiện, sau

đó người này tiếp tục chọn ngẫu nhiên một lá bài từ bộ bài 52 lá Tính xác suất

Trang 25

c) Xác suất để số chấm trên con xúc xắc là lớn nhất và chọn được một lá bài tây bằng: 1

26

d) Xác suất để số chấm trên con xúc xắc và số của lá bài là giống nhau bằng: 1

16

Câu 4 Trên một bảng quảng cáo, người ta mắc hai hệ thống bóng đèn Hệ

thống I gồm 2 bóng mắc nối tiếp, hệ thống II gồm 2 bóng mắc song song Khả năng bị hỏng của mỗi bóng đèn sau 6 giờ thắp sáng liên tục là 0,15 Biết tình trạng của mỗi bóng đèn là độc lập Khi đó xác suất để:

a) Đồng xu A xuất hiện mặt ngửa bằng: 1

Câu 6 Một hộp có chứa 6 bút mực xanh và 4 bút mực đỏ cùng loại, cùng kích

thước và khối lượng Lấy ra ngẫu nhiên đồng thời 3 bút từ hộp Gọi A là biến cố

"ba bút lấy ra đều là bút mực xanh" B là biến cố "ba bút lấy ra đều là bút mực đỏ" Khi đó:

a) Có 30 kết quả thuận lợi cho biến cốA

b) Có 4 kết quả thuận lợi cho biến cố B

c) Xác suất của biến cố bằng 1

Trang 26

c) P AB ( ) 0, 2 d) P AB ( ) 0, 24

Câu 9 Một hộp có chứa 5 quả cầu trắng và 6 quả cầu đen cùng kích thước và

khối lượng Lấy ra ngẫu nhiên cùng một lúc 4 quả cầu Khi đó, xác xuất để trong

4 quả cầu lấy ra:

a) Hai quả cầu trắng bằng: 5

11 b) Ít nhất 3 quả cầu đen bằng: 23

66

c) Toàn cầu trắng bằng: 1

66 d) Không có cầu trắng bằng:65

66

Câu 10 Có ba người cùng đi câu cá Xác suất câu được cá của người thứ nhất là

0,5 Xác suất câu được cá của người thứ hai là 0,4 Xác suất câu được cá của người thứ ba là 0,3 Khi đó xác suất của biến cố:

a) Có đúng 1 người câu được cá bằng: 0,34

b) Có đúng 2 người câu được cá bằng: 0, 29

c) Người thứ 3 luôn luôn câu được cá bằng: 0,3

d) Có ít nhất 1 người câu được cá bằng: 0, 21

Câu 11 Một bộ bài tú lơ khơ có 52 lá, rút ngẫu nhiên lần lượt 3 lá, mỗi lần rút 1

lá, sau mỗi lần rút ta đều để lại lá bài đó vào bộ Khi đó:

a) Xác suất rút là bài thứ nhất là con Át là 4

52.b) Xác suất rút là bài thứ hai là con Át là 3

52.c) Xác suất rút là bài thứ ba là con J là 1

52.d) Xác suất để hai lần đầu rút được lá bài Át và lần thứ ba rút được lá bài J

1

2197

Câu 12 Mỗi ngày, Steve cố gắng giải các ô chữ dễ, trung bình và khó trên báo

Anh ta có xác suất hoàn thành ô chữ dễ là 0,84 , xác suất hoàn thành ô chữ trungbình là 0,59 và xác suất hoàn thành ô chữ khó là 0,11 Khi đó xác suất để vào một ngày bất kỳ, Steve sẽ:

Phần 3: Câu trắc nghiệm trả lời ngắn

Câu 1. Tung đồng thời một đồng xu và một cục xúc xắc 12 mặt (1-12) Tính xác suất:

Xuất hiện mặt ngửa và mặt là bội của 3

Trang 27

Câu 2. An và Bình không quen biết nhau và học ở hai nơi khác nhau Xác suất

để An và Bình đạt điểm giỏi về môn Toán trong kì thi cuối năm tương ứng là 0,92 và 0,88

a) Tính xác suất để cả An và Bình đều đạt điểm giỏi

b) Tính xác suất để cả An và Bình đều không đạt điểm giỏi

Câu 3. Hai xạ thủ cùng bắn vào bia một cách độc lập với nhau Xác suất bắn trúng bia của xạ thủ thứ nhất bằng 1

2, xác suất bắn trúng bia của xạ thủ thứ hai bằng 1

3 Tính xác suất của mỗi biến cố:

a) Xạ thủ thứ nhất bắn trúng bia, xạ thủ thứ hai bắn trật bia

b) Cả hai xạ thủ đều bắn không trúng bia

Câu 4. Trong một trận đấu bóng đá quan trọng ở vòng đấu loại trực tiếp, khi trận đấu buộc phải giải quyết bằng loạt sút luân lưu 11 m, huấn luyện viên đội X

đưa danh sách lần lượt 5 cầu thủ có xác suất sút luân lưu 11 m thành công là 0,

8;0,8;0, 76;0, 72;0, 68 Tìm xác suất để chỉ có cầu thủ cuối cùng sút trượt luân lưu (kêt quả gần đúng được làm tròn đến hàng phần nghìn)

Câu 5. Trong phòng học của An có ba bóng đèn và xác suất hỏng của chúng lần lượt bằng 0,05;0, 04;0,03 Chỉ cần có một bóng đèn sáng thì An vẫn có thể làm bài tập được Tính xác suất để An có thể làm bài tập, biết tình trạng (sáng hoặc bị hỏng) của mỗi bóng đèn không ảnh hưởng đển tình trạng các bóng còn lại

Câu 6. Một bệnh truyền nhiễm có xác suất lây bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang Chị Hoa có tiếp xúc với người bệnh hai lần, một lần đeo khẩu trang và một lần không đeo khẩu trang Tính xác suất để chị Hoa bị lây bệnh từ người bệnh truyền nhiễm đó

Câu 7. Hộp A đựng 5 tấm thẻ được đánh số từ 1 đến 5 , hộp B đựng 6 tấm thẻ được đánh số từ 1 đến 6 , hai thẻ khác nhau ở mỗi hộp đánh hai số khác nhau Chọn ngẫu nhiên từ hộp A một tấm thẻ và từ hộp B hai tấm thẻ Gọi X là biến cố: "Chọn được thẻ mang số lẻ từ hộp A ", Y là biến cố: "Chọn được thẻ mang

số chăn từ hộp A ", và Z là biến cố: "Chọn được hai thẻ mang số lẻ từ hộp B ".Tính xác suất để tích số được ghi trên ba tấm thẻ thu được là số chẵn

Câu 8. Một lô hàng có 20 sản phẩm giống nhau trong đó có 4 sản phẩm không đạt chất lượng còn lại là sản phẩm đạt chất lượng tốt Mỗi lần kiểm tra, người ta chọn ra ngẫu nhiên 2 sản phẩm Tính xác suất để lấy ra được ít nhất một sản phẩm tốt

Câu 9. Nhà trường muốn chọn một đội văn nghệ có đủ cả nam và nữ gồm 12

em đi biểu diễn từ một nhóm học sinh gồm 10 nam sinh và 8 nữ sinh Tính xác xuất để đội văn nghệ được chọn có:

Trang 28

Câu 12.Một hộp có 10 quả bóng bàn trong đó có 6 quả mới Người ta lấy ra ngẫu nhiên 5 quả để thi đấu Tính xác suất của biến cố lấy được ít nhất 2 quả bóng mới.

Câu 13.Từ một lớp có 40 bạn trong đó có 18 bạn nữ, thầy giáo chủ nhiệm muốn chọn ra 5 bạn để bầu vào ban cán sự của lớp Tính xác suất để 5 bạn được chọn có ít nhất 3 bạn nữ

Câu 14.Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau Xác suất để động cơ I chạy tốt là 0,8 và xác suất để động cơ II chạy tốt là 0,7 Hãy tính xác suất để cả hai động cơ đều chạy tốt là bao nhiêu?

Câu 15.Bạn An và Bình cùng nhau thi bắn cung Xác suất bạn An bắn vào tâm

là 0,7 , xác suất bạn Bình bắn được vào tâm là 0,45 Tính xác suất trong một lầnbắn nào đó, bạn An bắn được vào tâm còn bạn Bình thì không?

Câu 16.Một bình đựng 7 viên bi trắng và 5 viên bi đen Lần lượt lấy ngẫu nhiên

ra 2 bi, sau khi lấy lần thứ nhất ta để lại viên bi vào bình rồi mới lấy tiếp lần thứ hai Tính xác suất để lấy được bi thứ 1 màu trắng và bi thứ 2 màu đen?

Câu 17.Hai người độc lập nhau ném bóng vào rổ Mỗi người ném vào rổ của mình một quả bóng Biết rằng xác suất ném bóng trúng vào rổ của từng người tương ứng là 1

3 và 3

7 Gọi A là biến cố: “Cả hai đều không ném bóng trúng vào rổ” Khi đó, xác suất của biến cố A là bao nhiêu?

Câu 18.Một trường học có hai máy photocopy Vào một ngày bất kỳ, máy A

8% khả năng bị kẹt giấy và máy B có 12% khả năng bị kẹt giấy Xác định xác suất để vào một ngày bất kỳ, cả hai máy sẽ:

a) Bị kẹt giấy b) Làm việc liên tục

Câu 19.Một cậu bé và một cô bé được hỏi sinh vào ngày nào trong tuần Tìm xác suất sao cho:

a) Bé trai sinh vào thứ Hai và bé gái sinh vào Thứ Tư

b) Bé trai sinh vào ngày cuối tuần (Thứ Bảy và Chủ nhật) còn bé gái thì không

Trang 29

Câu 20.Jenny, Jim đang trò đang trò chuyện với Merry về việc có nên đi dự tiệchay không Xác suất Jenny sẽ tham dự là 0,4 và xác suất Jim sẽ tham dự là 0,6 , nhưng hôm đó Merry có việc bận nên khả năng không tham dự bữa tiệc là 0,8 Tính xác suất để ba người bạn cùng tham dự.

B CÂU HỎI VÀ ĐÁP ÁN (DÙNG CHO GIÁO VIÊN)

CHƯƠNG VIII: CÁC QUY TẮC TÍNH XÁC SUẤT BÀI 28 BIẾN CỐ HỢP, BIẾN CỐ GIAO, BIẾN CỐ ĐỘC LẬP

Phần 1: Câu trắc nghiệm nhiều phương án lựa chọn

Câu 10: Cho hai biến cố AB. Biến cố “A hoặc B xảy ra” được gọi là

A Biến cố giao của AB. B Biến cố đối của A.

Trang 30

C Biến cố hợp của AB. D Biến cố đối của B.

Lời giải Chọn C

Theo định nghĩa, biến cố “A hoặc B xảy ra” được gọi là biến cố hợp của A

.

B

Câu 11: Cho hai biến cố AB. Biến cố “ Cả AB đều xảy ra” được gọi là

A Biến cố giao của AB. B Biến cố đối của A.

C Biến cố hợp của AB. D Biến cố đối của B.

Lời giải Chọn A

Theo định nghĩa, biến cố “Cả AB đều xảy ra” được gọi là biến cố giao của

AB.

Câu 12: Cho hai biến cố AB. Nếu việc xảy ra hay không xảy ra của biến cốnày không ảnh hưởng đến xác suất xảy ra của biến cố kia thì hai biến cố AB

được gọi là

A Xung khắc với nhau B Biến cố đối của nhau.

C Độc lập với nhau D Không giao với nhau.

Lời giải Chọn C

Theo định nghĩa, nếu việc xảy ra hay không xảy ra của biến cố này không ảnhhưởng đến xác suất xảy ra của biến cố kia thì hai biến cố AB được gọi làđộc lập với nhau

Câu 13: Cho AB là hai biến cố độc lập Mệnh đề nào dưới đây đúng?

A Hai biến cố AB không độc lập

B Hai biến cố AB không độc lập

C Hai biến cố AB độc lập

D Hai biến cố AAB độc lập

Lời giải Chọn C

A “Thành viên được chọn là học sinh khối 11 và là học sinh nam”.

B “Thành viên được chọn là học sinh khối 11 và không là học sinh nam”.

C “Thành viên được chọn là học sinh khối 11 hoặc là học sinh nam”.

D “Thành viên được chọn không là học sinh khối 11 hoặc là học sinh nam”.

Lời giải

Trang 31

Các phần tử của biến cố A B là số tự nhiên từ 1 đến 20 thỏa mãn vừa chia hếtcho 3, vừa chia hết cho 4, tức là số đó chia hết cho 12.

Câu 16: Một hộp có 30 tấm thẻ được đánh số từ 1 đến 30 Lấy ngẫu nhiên một

A “Số ghi trên thẻ được lấy là số chia hết cho 8”.

B “Số ghi trên thẻ được lấy là số chia hết cho 2”.

C “Số ghi trên thẻ được lấy là số chia hết cho 6”.

D “Số ghi trên thẻ được lấy là số chia hết cho 4”.

Lời giải Chọn D

Biến cố P Q : “Số ghi trên thẻ được lấy là số chia hết cho cả 2 và 4”, tức là chiahết cho 4

Câu 17: Hai xạ thủ tham gia thi đấu bắn súng, mỗi người bắn vào bia của mìnhmột viên đạn một cách độc lập với nhau Gọi AB lần lượt là các biến cố

“Người thứ nhất bắn trúng bia”; “Người thứ hai bắn trúng bia” Khẳng định nàosau đây đúng?

A Hai biến cố AB bằng nhau

B Hai biến cố AB đối nhau

C Hai biến cố AB độc lập với nhau

D Hai biến cố AB không độc lập với nhau

Lời giải Chọn C

Do hai xạ thủ thi đấu một cách độc lập nên việc xảy ra biến cố A không ảnhhưởng đến việc xác suất xảy ra biến cố B và ngược lại, do đó hai biến cố A

Trang 32

A Hai biến cố độc lập với nhau B Hai biến cố bằng nhau.

C Hai biến cố đối của nhau D Hai biến cố xung khắc.

Lời giải Chọn A

Việc xảy ra biến cố A không ảnh hưởng đến xác suất xảy ra của biến cố B nênhai biến cố này độc lập với nhau

BÀI 29 CÔNG THỨC CỘNG XÁC SUẤT

Phần 1: Câu trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi chọn một phương án đúng

Câu 13:Cho A, B là hai biến cố xung khắc Đẳng thức nào sau đây đúng?

A P A B   P A P B  B P A B  P A P B   .

C P A B   P A  P B  D P A B   P A P B 

Lời giải Chọn A

A Độc lập B Không xung khắc.

C Xung khắc D Không rõ.

Lời giải Chọn B

Ta có: P A B   P A P B  P A B   nên   1 0

12

P AB  

Suy ra hai biến cố AB là hai biến cố không xung khắc

Câu 15: Cho A B, là hai biến cố xung khắc Biết P A   15, P A B   13 Tính

 

P B

A 35 B 158 C 152 D 151

Lời giải Chọn C

Trang 33

Lời giải Chọn A

Gọi A là biến cố "Chọn được 2 viên bi xanh"; B là biến cố "Chọn được 2 viên

bi đỏ", C là biến cố "Chọn được 2 viên bi vàng" và X là biến cố "Chọn được 2viên bi cùng màu"

Ta có X   A B Cvà các biến cố A B C, , đôi một xung khắc

Do đó, ta có: P X( ) P A( ) P B( ) P C( )

Trang 34

10 45

XC  ;V: “lấy được 2 bi viên vàng” ta có: 2

6 15

VC  ;T: “ lấy được 2 bi màu trắng” ta có: 2

Ta có: 2

10 ( )  

Gọi các biến cố: D: “lấy được 2 viên đỏ”; X: “lấy được 2 viên xanh”;

V: “lấy được 2 viên vàng”

Ta có D, X, V là các biến cố đôi một xung khắc và C D X V

2 3

Trang 35

nhiên một sinh viên Tính xác suất của các biến cố sinh viên được chọn khônghọc tiếng Anh và tiếng Pháp.

Gọi A: "Sinh viên được chọn học tiếng Anh";

B: "Sinh viên được chọn chỉ học tiếng Pháp";

D: "Sinh viên được chọn không học tiếng Anh và tiếng Pháp "

Câu 21: Cho tập X 1, 2,3, 4,5 Viết ngẫu nhiên lên bảng hai số tự nhiên, mỗi

số gồm 3 chữ số đôi một khác nhau thuộc tập X Tính xác suất để trong hai số đó

Số các số tự nhiên có 3 chữ số đôi một khác nhau thuộc tập X là: 5.4.3 60  Trong đó số các số không có mặt chữ số 5 là 4.3.2 24  và số các số có mặt chữ

số 5 là 60 24 36  

Gọi A là biến cố hai số được viết lên bảng đều có mặt chữ số 5; B là biến cố hai

số được viết lên bảng đều không có mặt chữ số 5

Rõ ràng A và B xung khắc Do đó áp dụng quy tắc cộng xác suất ta có:

Câu 22: Gieo hai hột súc sắc màu xanh và trắng Gọi x là số nút hiện ra trên

hột xanh và y là số nút hiện ra trên hột trắng Gọi A là biến cố x y   và B làbiến cố 5 x y 8    Khi đó P A B   có giá trị là:

A 11

Trang 36

Lời giải Chọn D

Không gian mẫu co 36 phần tử

Số phần tử của biến cố A là 36 6 15

Câu 23: Gieo hai con súc sắc xanh, đỏ Gọi x, y là số nút xuất hiện ra hột xanh

và đỏ Gọi A, B là hai biến cố sau đây A  x; y / x y , B   {x; y / 3    x y 8} Tìm P A B  

  14   25   10   29

Câu 24: Trong một lớp 10 có 50 học sinh Khi đăng ký cho học phụ đạo thì có

38 học sinh đăng ký học Toán, 30 học sinh đăng ký học Lý, 25 học sinh đăng kýhọc cả Toán và Lý Nếu chọ ngẫu nhiên 1 học sinh của lớp đó thì xác suất để emnày không đăng ký học phụ đạo môn nào cả là bao nhiêu

A 0,07 B 0,14 C 0,43 D Kết quả khác

Lời giải Chọn B

Gọi A là biến cố “học sinh đăng ký Toán”

Gọi B là biến cố “học sinh đăng ký Lý”

A B  “học sinh đăng ký Toán, Lý”

A B  là biến cố “học sinh có đăng ký học phụ đạo”

Phần 2: Câu trắc nghiệm Đúng – Sai

Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Ngày đăng: 13/06/2024, 20:16

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w