1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Bài giảng công nghệ môi trường_26 docx

9 350 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 419,07 KB

Nội dung

1 SPECIALIZED ENGLISH – SEMESTER 5 VAN LANG UNIVERSITY DEPARTMENT OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT Chapter 26Chapter 26 FUNDAMENTALS OF BIOLOGICAL FUNDAMENTALS OF BIOLOGICAL Dr. Tran Thi My Dieu Sep. 2011 VAN LANG UNIVERSITY DENTEMA WASTEWATER TREATMENTWASTEWATER TREATMENT Modeling suspended growth Modeling suspended growth treatment processtreatment process CONTENTSCONTENTS PurposePurpose The completeThe complete mix reactor without recyclemix reactor without recycle VAN LANG UNIVERSITY DENTEMA The completeThe complete mix reactor without recyclemix reactor without recycle The completeThe complete mix reactor with recyclemix reactor with recycle PURPOSESPURPOSES Purpose of modeling suspended growth Purpose of modeling suspended growth treatment processes?treatment processes? VAN LANG UNIVERSITY DENTEMA To assess treatability of wastewater To obtain model kinetic coefficient COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE V, X, SV, X, S QQ QQ VAN LANG UNIVERSITY DENTEMA SS 00 XX 00 SS XX COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE VAN LANG UNIVERSITY DENTEMA COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE VAN LANG UNIVERSITY DENTEMA 2 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Biomass mass balance Rate of accumulation of ii Rate of flow of microorganism ih = - Rate of flow of microorganism fh + Net growth of microorganism ihi h VAN LANG UNIVERSITY DENTEMA m i croorgan i sm within the system boundary i nto t h e system boundary out o f t h e system boundary w i t hi n t h e boundary Accumulation = inflow – outflow + net growth COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Biomass mass balance Accumulation = inflow – outflow + net growth Symbolic representation VAN LANG UNIVERSITY DENTEMA ' 0 . g VrQXQXV dt dX  dX/dt = rate of change of biomass concentration in reactor measured as g VSS/m 3 .d V = reactor volume, m 3 Q = influent flow-rate, m 3 /d X o = concentration of biomass in influent, g VSS/m 3 X = concentration of biomass in the reactor, g VSS/m 3 r’ g = net rate of biomass production, g VSS/m 3 .d COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Biomass mass balance ' 0 . g VrQXQXV dt dX  VAN LANG UNIVERSITY DENTEMA At steady state dX/dt = 0 Assumed X o ~ 0            Xk SK SX VQX d S m  00 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Biomass mass balance            Xk S K SX VQX d S m  00 VAN LANG UNIVERSITY DENTEMA   S d S m k SK S      1 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Biomass mass balance d m k S K S      1 VAN LANG UNIVERSITY DENTEMA S S K       1 1 1 1       d dS dm dS kYk kK k kK S     COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Substrate mass balance Accumulation = inflow – outflow – utilization Symbolic representation VAN LANG UNIVERSITY DENTEMA su VrQSQSV dt dS  0 3 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Substrate mass balance su VrQSQSV dt dS  0 VAN LANG UNIVERSITY DENTEMA At steady state dS/dt = 0           SK kSX VQSQS s 0 0 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Substrate mass balance           S K kSX VQSQS s 0 0 VAN LANG UNIVERSITY DENTEMA   s            SK kSX VSSQ s 0 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Substrate mass balance            S K kSX VSSQ s 0 VAN LANG UNIVERSITY DENTEMA   s SK kSXSS S     0 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Substrate mass balance S SKSS kS SKSS X m SS           00 VAN LANG UNIVERSITY DENTEMA S Y       d d k SSY k SSY X        1 1 1 00 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Determine model kinetic coefficient kS SK S S X S K kSXSS S        0   VAN LANG UNIVERSITY DENTEMA kS S S S K S  0  kSk K SS X s 11 0    COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Determine model kinetic coefficient SS X  0  VAN LANG UNIVERSITY DENTEMA k K tg S   S 1 k 1 4 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Dt i Y dk fdlifth VAN LANG UNIVERSITY DENTEMA D e t erm i ne Y an d k d f rom mo d e li ng o f th e complete-mix reactor without recycle COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE    d k SSY X    1 0 VAN LANG UNIVERSITY DENTEMA YY k X SS do 11    COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITHOUT RECYCLEWITHOUT RECYCLE Y k d X SS o    tg VAN LANG UNIVERSITY DENTEMA Y 1  1 ASSIGNMENT 3ASSIGNMENT 3 No. S o (mg/L) S (mg/L)  (ngày) X (mg VSS/L) 1 2000 250 0.4 800 2 2000 200 0.4 1000 VAN LANG UNIVERSITY DENTEMA Determine k and K s 3 2000 160 0.4 1300 4 2000 120 0.4 1600 5 2000 60 0.4 2000 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE VAN LANG UNIVERSITY DENTEMA COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE VAN LANG UNIVERSITY DENTEMA 5 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE HRTHRT Q V   VAN LANG UNIVERSITY DENTEMA Q Q VV L    COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE SRTSRT VX   VAN LANG UNIVERSITY DENTEMA rWee c X Q X Q   XQXQ VX Wee c    COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE In case of no return sludge In case of no return sludge VAN LANG UNIVERSITY DENTEMA SRT = HRTSRT = HRT COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Biomass mass balance Accumulation = inflow – outflow + net growth Symbolic representation VAN LANG UNIVERSITY DENTEMA  V rXQXQQQXV dt d X gRWeWo  ][ COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Biomass mass balance  V rXQXQQQXV dt dX gRWeWo  ][ At t d t t dX/dt 0 VAN LANG UNIVERSITY DENTEMA At s t ea d y s t a t e dX/dt = 0 Assumed X o ~ 0 (Q – Q W )X e + Q w X R = r g V COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Biomass mass balance (Q – Q W )X e + Q w X R = r g V S VAN LANG UNIVERSITY DENTEMA d S m rWee k SK S VX XQXQ       RWeW XQXQQ VX SRT   6 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Biomass mass balance d S m rWee k SK S VX XQXQ      VAN LANG UNIVERSITY DENTEMA d S m c k SK S      1     1 1 1 1       dc cdS dmc cdS kYk kK k kK S     COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Substrate mass balance Accumulation = inflow – outflow + generation Symbolic representation VAN LANG UNIVERSITY DENTEMA   suWWrr VrSQSQQQSQSQV dt dS  0 .   su rVSSQV dt dS 0  COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Substrate mass balance VrQSQSV dt dS suo  VAN LANG UNIVERSITY DENTEMA dt At steady state dS/dt = 0                   SK kXS Q V SS s o COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Substrate mass balance                   S K kXS Q V SS o VAN LANG UNIVERSITY DENTEMA      S K Q s SK kSX SS s     0 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Substrate mass balance SK kSX SS s     0     S S Y S S S K  1 VAN LANG UNIVERSITY DENTEMA  cd c k SSY X      1 0         S S Y k S S S Y S K X d c m S         00 1 1 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Dt i kiti ffiitf VAN LANG UNIVERSITY DENTEMA D e t erm i ne ki ne ti c coe ffi c i en t s f rom modeling of the complete-mix reactor with recycle 7 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE  cd c k SSY X      1 0 VAN LANG UNIVERSITY DENTEMA Y k YX SS d c o    11 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Y k d   tg X SS o   VAN LANG UNIVERSITY DENTEMA Y 1 c  1 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Design and operating parameters Food to microorganism (F/M) ratio iQS VAN LANG UNIVERSITY DENTEMA Total appl i ed substrate rate QS o F/M = = Total microbial biomass VX F/M = food to biomass ratio, g BOD or bsCOD/g VSS.d Q = influent wastewater flow-rate, m 3 /d COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Design and operating parameters Organic volumetric loading rate QS VAN LANG UNIVERSITY DENTEMA kggV QS L o org /10 3   L org = volumetric organic loading, kg BOD/m 3 .d Q = influent wastewater flow-rate, m 3 /d S o = influent BOD concentration, g/m 3 V = aeration tank volume, m 3 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Oxygen requirement Oxygen used = bCOD removed – COD of waste sludge VAN LANG UNIVERSITY DENTEMA R o = Q(S o – S) – 1.42 P x,bio R o = oxygen required, kg/d P x,bio = biomass as VSS wasted per day, kg/d COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Mixed liquor solids concentration and solids production SRT VX P T VSSX T  , VAN LANG UNIVERSITY DENTEMA SRT P XT, VSS = total solids wastes daily, g VSS/d X T = total MLVSS concentration in aeration tank, g VSS/ m V = volume of rector, m 3 SRT = solid retention time, d 8 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Mixed liquor solids concentration biomass concentration nbVSS concentration MLVSS = + VAN LANG UNIVERSITY DENTEMA X T = X + X i nbVSS inf nbVSS waste per day From cell decay Affected by COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Mixed liquor solids concentration X T = X + X i Accumulation = inflow – outflow + generation VAN LANG UNIVERSITY DENTEMA Vr SRT VX QXV dt dX ix i io i ,,        X o,i = nbVSS concentration in influent, g/m 3 X i = nbVSS concentration in aeration tank, g/m 3 r X,i = rate of nbVSS production from cell debris, g/m 3 .d COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Mixed liquor solids concentration Vr SRT VX QXV dt dX ix i io i ,,        At stead y state dX i /dt = 0 VAN LANG UNIVERSITY DENTEMA y i Vr SRT VX QX iX i io ,, 0  SRTXkf SRT XX ddioi   , COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Mixed liquor solids concentration X T = X + X i   SRTX SRT X k f SSYSRT X io o        , VAN LANG UNIVERSITY DENTEMA   SRT X k f SRTk X dd d T        1 Heterotrophic biomass Cell debris nbVSS inf COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Solid production   SRT X S S Y SRT  SRT VX P T VSSX T  , VAN LANG UNIVERSITY DENTEMA    SRT X SRTXkf SRTk S S Y SRT X io dd d o T      , 1  iodd d o VSSX QXXVkf SRTk SSQY P ,, 1     COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Solid production   iodd d o VSSX QXXVkf SRTk SSQY P ,, 1           VAN LANG UNIVERSITY DENTEMA                  SRTk S S Y SRT X d o 1     io d odd d o VSSX QX SRTk SRTSSYQkf SRTk SSQY P ,, 11        Heterotrophic biomass Cell debris nbVSS inf 9 COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Solid production   io d odd d o VSSX QX SRTk SRTSSYQkf SRTk SSQY P ,, 11        Heterotrophic Cell bVSS VAN LANG UNIVERSITY DENTEMA Heterotrophic biomass Cell debris n bVSS inf AB C  ooTSSX VSSTSSQC BA P  85.085.0 , net waste activated sludge produced each day, measured in terms of TSS, kg/d COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Solid production Mass of MLVSS = XMass of MLVSS = X VSSVSS .V = P.V = P X,VSSX,VSS .SRT .SRT VAN LANG UNIVERSITY DENTEMA Mass of MLSS = XMass of MLSS = X TSSTSS .V = P.V = P X,TSSX,TSS .SRT .SRT COMPLETECOMPLETE MIX REACTOR MIX REACTOR WITH RECYCLEWITH RECYCLE Observed yield   io d odd d o VSSX QX SRTk SRTSSYQkf SRTk SSQY P ,, 11        VAN LANG UNIVERSITY DENTEMA Q(S o -S) SS X SRTk SRTYkf SRTk Y Y o io d dd d obs        , 11 Y obs = g VSS/g substrate removed Assignment 4 S 0 (mg COD/L) S (mg COD/L) X (mg VSS/L) 400 50 1000 800 80 1500 1200 100 1800 VAN LANG UNIVERSITY DENTEMA 1200 100 1800 1600 120 2000 2000 200 2000 k and K s ? Q = 10 m 3 /h and V = 60 m 3 Comments on lab-data . SEMESTER 5 VAN LANG UNIVERSITY DEPARTMENT OF ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT Chapter 26Chapter 26 FUNDAMENTALS OF BIOLOGICAL FUNDAMENTALS OF BIOLOGICAL Dr. Tran Thi My Dieu Sep. 2011 VAN

Ngày đăng: 21/06/2014, 23:20

TỪ KHÓA LIÊN QUAN