1. Trang chủ
  2. » Giáo án - Bài giảng

Đề ktck1 toán 8 thcs hưng long

15 19 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Kiểm Tra Cuối HKI Môn Toán – Lớp 8
Trường học Thcs Hưng Long
Chuyên ngành Toán
Thể loại Đề Kiểm Tra
Định dạng
Số trang 15
Dung lượng 616,88 KB

Nội dung

KHUNG MA TRẬN ĐỀ KIỂM TRA CUỐI HKI MƠN TỐN – LỚP Tổng % điểm Mức độ đánh giá TT Chươn g/Chủ đề Nội dung/đơn vị kiến thức Đa thức nhiều biến Các phép toán cộng, trừ, nhân, chia đa thức nhiều biến Biểu thức đại số Hằng đẳng thức đáng nhớ ( 36 tiết) Các hình khối thực tiễn Nhận biết TNKQ TL (TN1) (0,25đ) TL2 a (0,5 đ) (TN4) (0,25đ) TL2 b (0,5 đ) Thông hiểu TNK TL Q (TN2, TL1a 3) (0,5đ (0,5đ) ) Vận dụng TNKQ TL Vận dụng cao TNK Q TL 1,75 TL1 b (0,5đ ) Phân thức đại số Tính chất phân thức đại số Các phép toán cộng, trừ, nhân, chia phân thức đại số (TN5,7) (0,5đ) 1 (TN6) TL1c (0,25đ (0,5đ ) ) Hình chóp tam giác đều, hình chóp tứ giác (TN8,9) (0,5đ) TL3a (0,5đ ) 1,25 TL4, (1đ) (TN10,1 1) (0,5đ) 2,25 1,5 (4 tiết) Định lí Pythagore (4 tiết ) TL3b (0,5đ ) Định lí Pythagore TL5 a (1đ) Tứ giác Tứ giác (20 Tính chất dấu hiệu tiết ) nhận biết tứ giác đặc biệt Tổng số câu Số điểm Tỉ lệ % Tỉ lệ chung 0,5 (TN1 2) (0,25đ ) TL5b ,c (1,5đ ) 2đ 1,5đ 35% 65% 1đ 2,0đ 30% 0,5đ 2đ 25% 35% 2,75 1đ 10% 23 100% 100% BẢN ĐẶC TẢ MA TRẬN ĐỀ KIỂM TRA CUỐI HKI MƠN TỐN – LỚP Mức độ đánh giá TT Chủ đề Số câu hỏi theo mức độ nhận thức Nhận biết Thông hiểu SỐ VÀ ĐẠI SỐ Biểu thức Đa thức nhiều Nhận biết: đại số biến Các phép – Nhận biết khái niệm đơn thức, đa thức toán cộng, trừ, nhiều biến nhân, chia đa thức nhiều biến Thông hiểu: – Tính giá trị đa thức biết giá trị biến Vận dụng: – Thực việc thu gọn đơn thức, đa thức – Thực phép nhân đơn thức với đa thức phép chia hết đơn thức cho đơn thức – Thực phép tính: phép cộng, phép trừ, 1.TN (TN1) TL2.a (0,5đ) 2.TN (2,3), 1.TL1.2 TL1a (0,5đ) Vận dụng Vận dụng cao phép nhân đa thức nhiều biến trường hợp đơn giản – Thực phép chia hết đa thức cho đơn thức trường hợp đơn giản 1.TN4 Nhận biết: – Nhận biết khái niệm: đồng thức, đẳng thức TL2.b (0,5đ) Thông hiểu: Hằng đẳng thức – Mô tả đẳng thức: bình phương tổng hiệu; hiệu hai bình phương; lập phương tổng hiệu; tổng hiệu hai lập phương Vận dụng: – Vận dụng đẳng thức để phân tích đa thức thành nhân tử dạng: vận dụng trực tiếp đẳng thức; – Vận dụng đẳng thức thông qua nhóm hạng tử đặt nhân tử chung Phân thức đại số Nhận biết: 2.TN5 Tính chất – Nhận biết khái niệm phân thức ,7 phân thức đại số: định nghĩa; điều kiện xác định; giá trị phân đại số Các phép thức đại số; hai phân thức toán cộng, trừ, Thông hiểu: TL1b (0,5đ) – Mô tả tính chất phân thức đại số 1.TN6 TL1c (0,5đ) Vận dụng: nhân, chia phân thức đại số TL4,6 – Thực phép tính: phép cộng, phép trừ, phép nhân, phép chia hai phân thức đại số (1đ) – Vận dụng tính chất giao hốn, kết hợp, phân phối phép nhân phép cộng, quy tắc dấu ngoặc với phân thức đại số đơn giản tính tốn Các hình khối thực tiễn Hình chóp tam giác đều, hình chóp tứ giác Nhận biết 2.TN8 – Mô tả (đỉnh, mặt đáy, mặt bên, cạnh bên) hình ,9 chóp tam giác hình chóp tứ giác Thơng hiểu – Tạo lập hình chóp tam giác hình chóp tứ giác – Tính diện tích xung quanh, thể tích hình chóp tam giác hình chóp tứ giác – Giải số vấn đề thực tiễn (đơn giản, quen thuộc) gắn với việc tính thể tích, diện tích xung quanh hình chóp tam giác hình chóp tứ giác (ví dụ: tính thể tích diện tích xung quanh TL3a (0,5đ) số đồ vật quen thuộc có dạng hình chóp tam giác hình chóp tứ giác đều, ) Vận dụng TN 10,11 – Giải số vấn đề thực tiễn gắn với việc tính thể tích, diện tích xung quanh hình chóp tam giác hình chóp tứ giác Thơng hiểu: – Giải thích định lí Pythagore TL3b (0,5đ) Vận dụng: Định lí Pythagore Định lí Pythagore – Tính độ dài cạnh tam giác vng cách sử dụng định lí Pythagore Vận dụng cao: – Giải số vấn đề thực tiễn gắn với việc vận dụng định lí Pythagore (ví dụ: tính khoảng cách hai vị trí) Tứ giác Nhận biết: – Mô tả tứ giác, tứ giác lồi TL5a (1đ) Tứ giác Thông hiểu: – Giải thích định lí tổng góc tứ giác lồi 3600 Tính chất dấu hiệu nhận biết Nhận biết: – Nhận biết dấu hiệu để hình thang hình 1.TN12 tứ giác đặc biệt thang cân (ví dụ: hình thang có hai đường chéo hình thang cân) – Nhận biết dấu hiệu để tứ giác hình bình hành (ví dụ: tứ giác có hai đường chéo cắt trung điểm đường hình bình hành) – Nhận biết dấu hiệu để hình bình hành hình chữ nhật (ví dụ: hình bình hành có hai đường chéo hình chữ nhật) – Nhận biết dấu hiệu để hình bình hành hình thoi (ví dụ: hình bình hành có hai đường chéo vuông góc với hình thoi) – Nhận biết dấu hiệu để hình chữ nhật hình vng (ví dụ: hình chữ nhật có hai đường chéo vuông góc với hình vng) Thơng hiểu – Giải thích tính chất góc kề đáy, cạnh bên, đường chéo hình thang cân – Giải thích tính chất cạnh đối, góc đối, đường chéo hình bình hành – Giải thích tính chất hai đường chéo hình chữ nhật – Giải thích tính chất đường chéo hình thoi – Giải thích tính chất hai đường chéo hình TL5b, c (1,5đ) vuông ĐỀ KIỂM TRA HỌC KỲ I – TOÁN I TRẮC NGHIỆM KHÁCH QUAN: (3,0 điểm) Hãy chọn đáp án đáp án sau: Câu : Trong biểu thức đại số sau, biểu thức đơn thức? ( x + y3 ) - x3 y + x - x4 y5 3y A + x y B C D - 3x y ( Câu : Thu gọn đa thức ) ( xy +16 + - x y + xy - 10 2 A x y - xy – 2 C - x y + xy – Câu : Kết phép nhân ) ta 2 B x y + 3xy + 2 D - x y + 3xy + x  x  1  x  1 2 A x  3x  3x  2 B x  3x  3x  C x  3x  3x  D x  x  x   x  2 Câu : Điền vào chỗ trống sau: A 2x x  B 4x 4 C D 14 x3 y Câu : Kết rút gọn phân thức 21xy x3 A y 2x2 B y  x  5 C  y   x2 y D y 6x  4x2  : x ta kết Câu : Thực phép tính x x A x  3x B x  5x  y x  y  y Câu : Kết phép tính y x C x  3x D x  7x A y 7x  2y B y 7x  2y C y 7x D y Câu : Hình chóp tam giác có mặt? A B C D Câu : Cuốn lịch để bàn hình bên có dạng hình gì? A Hình lăng trụ đứng tam giác B Hình chóp tam giác C Hình chóp tứ giác D Hình hộp chữ nhật Câu 10 : Cho hình chóp tam giác có độ dài đáy cm chiều cao mặt bên cm Diện tích xung quanh hình chóp tam giác A 12 cm B 18 cm C 72 cm D 36 cm Câu 11 : Một hộp quà lưu niệm có dạng hình chóp tứ giác với độ dài đáy cm chiều cao cm Thể tích hộp quà lưu niệm A 98 cm B 42 cm C 21 cm D 14 cm     Câu 12 : Cho tứ giác ABCD , đó A  B 140 Tổng C  D A 220  II TỰ LUẬN : (7,0 điểm) Câu (1,5 điểm) Rút gọn x  1   x    x    a) B 200  C 160  D 130  b) x   x    3x    x   2x  x  x  18   x2  c) x  x  Câu (1 điểm) Phân tích đa thức thành nhân tử 2 a) 15a x  10ax b) xy  x  y  10 Câu (1 điểm) Hình bên lều trại hè học sinh tham gia cắm trại có dạng hình chóp tứ giác theo kích thước hình vẽ a) Thể tích khơng khí bên lều bao nhiêu? b) Xác định số vải bạt cần thiết để dựng lều (khơng tính đến đường viền, nếp gấp, …) bao nhiêu? Biết chiều cao mặt bên lều trại 2,24 m Câu (0,5 điểm) Nhân dịp chào mừng năm 2022, cửa hàng giảm giá mặt hàng máy tính cầm tay 20% Và người có thẻ “Khách hàng thân thiết” giảm thêm 10% giá giảm Hỏi bạn An có thẻ “khách hàng thân thiết” thì mua máy tính Casio 580VNX bạn An phải trả tiền? Biết giá niêm yết ban đầu máy tính cửa hàng 680000 đồng? Câu 5: (2,5 điểm) Cho ABC vuông A (AB < AC), M trung điểm BC Trên tia đối tia MA lấy điểm D cho MD =MA a) Chứng minh tứ giác ABDC hình chữ nhật b) Gọi E điểm đối xứng A qua B Chứng minh tứ giác BEDC hình bình hành c) EM cắt BD K Chứng minh EK = 2KM 2 Câu (0,5đ) Cho biểu thức A 12 x  y  x  y  Tính giá trị lớn biểu thức A ………………………………… Hết …………………………………… ĐÁP ÁN VÀ BIỂU ĐIỂM I TRẮC NGHIỆM ( điểm) D D A B B C II TỰ LUẬN (7,0 điểm) Câu Câu (1,5 điểm) a) b) Nội dung  x  1   x    x   c)   x    x    x  3  x   C 10 D 11 A 12 A Điểm 0,25 điểm 0,25 điểm 9 x  x  x  9 x   D 0,25 điểm 0,25 điểm 3 x  x   x  x  x   x  x   x    3x    x   2x  x  x  18   x 3 x  x2  x.( x  3) 5.( x  3) D 0,25 điểm 0,25 điểm   x  x  18  x    x  3  x  x  x  15  x  x  18  x  3  x  3  x   x  3  x  3 x  Câu (1 điểm) A B 15a x  10ax 5ax(3a  x) xy  x  y  10 2 x( y  2)  5( y  2) (2 x  5)( y  2) 0,25 điểm 0,25 điểm 0,25 điểm 0,25 điểm Câu (1 điểm) Thể tích khơng khí bên lều thể tích hình chóp tứ giác đều: 1 V  S h  2  2,67  m  3 3 0,25 điểm Vậy thể tích khơng khí bên lều khoảng 2,67 m Số vải bạt cần thiết để dựng lều diện tích xung quanh hình chóp tứ giác 0,25 điểm 1 S xq  C d   2.4  2,24 8,96  m  2 Vậy số vải bạt cần thiết để dựng lều 8,96 m 0,25 điểm Câu (1,0 điểm) An phải trả số tiền cho máy tính là: 680000.80%.90% = 489600 đồng Câu (2,5 điểm) 0,25 điểm 0,5 điểm 0,5 điểm A M C B K D E a) Xét tứ giác ABCD có AM = MD BM = MC Tứ giác ABCD hình bình hành · Ta lại có: BAC = 90 (gt) Do đó tứ giác ABCD hình chữ nhật b) Tứ giác ABCD hình chữ nhật (theo câu a), suy AB = CD AB // CD Do E đối xứng với A qua B, A, E thẳng hàng AB = BE Vì AB // CD nên BE // CD 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ 0,25 đ Vì AB = CD AB = BE nên CD = BE 0,25 đ Xét tứ giác BEDC có BE // CD BE = CD Suy tứ giác BEDC hình bình hành c) D AED có hai đường trung tuyến EM BD cắt K, nên K trọng tâm 0,25 đ 0,25 đ EK = EM tam giác EAD Suy hay EK = 2KM Câu (0,5 điểm) 2 Ta có A 12 x  y  x  y    x  12 x      y  y  16   26 0,25 điểm   x  12 x     y  y  16   26 2   x     y    26 2   x  3 0;   y   0 với x, y   2 A  x   y   26 26     Nên Do x  ; y  Dấu " " xảy x  0; y  0 suy x  ; y  Vậy giá trị lớn A 26 0,25 điểm

Ngày đăng: 24/11/2023, 11:14

w