1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu

73 9 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề (Luận văn thạc sĩ) Nghiên Cứu Đồ Thị Tri Thức Mờ Và Ứng Dụng Vào Bài Toán Phân Lớp Dữ Liệu
Tác giả Trần Ngọc Thái Sơn
Người hướng dẫn TS. Trần Mạnh Tuấn
Trường học Học viện Khoa học và Công nghệ
Chuyên ngành Công nghệ thông tin
Thể loại thesis
Năm xuất bản 2022
Thành phố Hà Nội
Định dạng
Số trang 73
Dung lượng 674,66 KB

Nội dung

1 LỜI CAM ĐOAN Tôi xin cam đoan kiến thức, nội dung trình bày luận văn kiến thức tơi tìm hiểu, nghiên cứu, đọc, dịch tài liệu, tổng hợp trình bày theo kiến thức cá nhân hướng dẫn TS Trần Mạnh Tuấn Các kết luận văn tơi nghiên cứu chưa cơng bố đâu Các tài liệu có liên quan tơi sử dụng trình làm luận văn ghi rõ nguồn gốc Tôi xin cam đoan luận văn khơng chép mà hồn tồn tơi nghiên cứu thực Tơi xin chịu tồn trách nhiệm với cam đoan Hà Nội, ngày 24 tháng 11 năm 2022 Học viên Trần Ngọc Thái Sơn LỜI CẢM ƠN Sau thời gian học tập, nghiên cứu thực hiện, đến hồn thành cơng trình nghiên cứu Trong q trình làm luận văn này, tơi nhận động viên, giúp đỡ thầy cô, bạn bè người thân Trước tiên, xin chân thành cảm ơn sâu sắc tới TS Trần Mạnh Tuấn nhiệt tình hướng dẫn, cung cấp tài liệu, tạo điều kiện thuận lợi để tơi hồn thành tốt luận văn Tôi xin gửi lời cảm ơn tới thầy giáo Viện Công nghệ thông tin Ban Lãnh đạo, phòng Đào tạo, phòng chức Học viện Khoa học Công nghệ giảng dạy tạo môi trường học tập, nghiên cứu tốt để tơi hồn thành đề tài Sau cùng, tơi xin gửi lời cảm ơn đến gia đình, bạn bè, bạn lớp cao học ITT20B, người đồng hành, giúp đỡ, chia sẻ với tơi q trình thực luận văn Trân trọng! Học viên Trần Ngọc Thái Sơn MỤC LỤC DANH MỤC BẢNG DANH MỤC HÌNH VẼ, BIỂU ĐỒ MỞ ĐẦU Lý chọn đề tài Mục đích nhiệm vụ nghiên cứu Đối tượng phạm vi nghiên cứu Phương pháp nghiên cứu đóng góp luận văn Cấu trúc luận văn CHƯƠNG CƠ SỞ LÝ THUYẾT 1.1 Lý thuyết đồ thị 1.2 Logic mờ 10 1.3 Suy diễn mờ (Fuzzy Inference) 15 1.4 Đồ thị tri thức mờ 18 1.5 Ngôn ngữ MATLAB 20 1.6 Tổng kết chương 24 CHƯƠNG ĐỒ THỊ TRI THỨC MỜ 25 2.1 Mơ hình đồ thị tri thức mờ phân lớp liệu 25 2.2 Xây dựng luật mờ 25 2.3 Biểu diễn đồ thị tri thức mờ từ luật mờ 28 2.4 Suy diễn đồ thị tri thức mờ 30 2.5 Các độ đo đánh giá trình phân lớp liệu 33 2.6 Ví dụ số việc xây dựng suy diễn đồ thị tri thức mờ 33 2.7 Tổng kết chương 43 CHƯƠNG CÀI ĐẶT VÀ XÂY DỰNG ỨNG DỤNG 44 3.1 Bài toán ứng dụng 44 3.2 Mô tả liệu 44 3.3 Cài đặt xây dựng ứng dụng 48 3.4 Kết thực nghiệm 50 KẾT LUẬN 55 PHỤ LỤC 56 Danh mục tài liệu tham khảo 68 DANH MỤC BẢNG Bảng 1: Hệ luật mờ 28 Bảng 2 Tập liệu đầu vào 35 Bảng 3: Bộ liệu đầu vào 36 Bảng 4: Bảng ma trận xân dựng đồ thị từ luật 39 Bảng 5: Bảng tính giá trị C với nhãn 40 Bảng 6: Bảng tính giá trị C với nhãn 40 Bảng 1: Các thuộc tính liệu đầu vào tập liệu bệnh ung thư Breast 45 Bảng 2: Các thuộc tính liệu đầu vào tập liệu bệnh tiểu đường Diebetes 45 Bảng 3: Các thuộc tính liệu đầu vào tập liệu đo chất lượng rượu Wine 46 Bảng 4: Các thuộc tính liệu đầu vào tập liệu bệnh gan Liver 46 Bảng 5: Dữ liệu Y học cổ truyền 48 Bảng 6: Kết thực nghiệm Accuracy liệu UCI 51 Bảng 7: Kết thực nghiệm thời gian liệu UCI 51 Bảng 8: Kết thực nghiệm Accuracy liệu tiền sản giật 53 Bảng 9: Kết thực nghiệm thời gian liệu tiền sản giật 53 DANH MỤC HÌNH VẼ, BIỂU ĐỒ Hình 1: Một số dạng hàm thuộc 11 Hình 2: Mơ hình suy luận mờ với luật-một tiền đề 16 Hình 3: Mơ hình suy luận mờ luật-nhiều tiền đề 17 Hình 4: Mơ hình suy luận mờ hai luật hai tiền đề 18 Hình 5: Minh họa đồ thị tri thức mờ 19 Hình 1: Mơ hình đồ thị tri thức mờ phân lớp liệu 25 Hình 2: Sơ đồ tổng quan hệ suy diễn mờ 27 Hình 3: Biểu diễn đồ thị tri thức mờ từ luật mờ theo thuộc tính 29 Hình 4: Biểu diễn đồ thị tri thức mờ 30 Hình 5: Quá trình suy diễn đồ thị tri thức mờ 32 Hình 6: Đồ thị FKG cho luật 39 Hình 1: Mơ hình cho tốn hỗ trợ chẩn đốn bệnh y học cổ truyền 49 Hình 2: Đồ thị tri thức mờ với bệnh án Y học cổ truyền 52 MỞ ĐẦU Lý chọn đề tài Với nghiên cứu gần đầy cho thấy việc sử dụng đồ thị tri thức mờ vấn đề Đồ thị tri thức (KG) phương pháp mạnh mẽ hỗ trợ xử lý vấn đề khai phá liệu KG kết hợp với kỹ thuật khác để giải toán học máy Tuy nhiên, KG gặp khó khăn cho việc xây dựng đồ thị suy luận gần tập liệu đầu vào có thơng tin chưa đầy đủ, chưa xác Khi đó, mơ hình đồ thị tri thức mờ (FKG) thiết kế vào năm 2020 để giải vấn đề KG kết hợp với logic xây dựng lên đồ thị tri thức mờ Một biểu đồ hình thành với nút biểu diễn nhãn ngôn ngữ cạnh xác định kết nối nhãn ngôn ngữ nhãn đầu Đồ thị FKG thể lý theo quy luật tự nhiên tác động giá trị biên ngôn ngữ để đưa kết đầu tương ứng Do vậy, việc nghiên cứu đồ thị tri thức mờ cần thiết, giải hiệu số toán phân lớp liệu Mục đích nhiệm vụ nghiên cứu - Nghiên cứu lý thuyết mờ, lý thuyết đồ thị, đồ thị tri thức mờ - Xây dựng demo thử nghiệm mơ hình với tốn phân lớp liệu Đối tượng phạm vi nghiên cứu - Logic mờ, đồ thị, đồ thị tri thức mờ (FKG) - Nghiên cứu Logic mờ, lý thuyết đồ thị, đồ thị tri thức mờ - Cài đặt, mơ hình dựa ngơn ngữ lập trình Matlab - Xây dựng thực thi demo liệu thu thập từ UCI liệu thu thập thực tế Phương pháp nghiên cứu đóng góp luận văn Phương pháp nghiên cứu lý luận: Học viên tập trung vào việc đọc hiểu, phân tích tốn, thu thập liệu cho tốn thơng qua nguồn tài liệu từ sách, giáo trình, … liên quan đến kiến thức sử dụng luận văn Phương pháp nghiên cứu thực tiễn: Tiến hành cài đặt mơ hình đồ thị tri thức mờ, xây dựng demo với liệu thu thập Các bước thực trình xây dựng mơ hình: - Thu thập liệu - Tiền xử lý liệu - Xây dựng mơ hình phân lớp kết - Đánh giá mơ hình - Báo cáo luận văn hoàn chỉnh đồ thi thức mờ ứng dụng - Demo mơ hình đồ thị tri thức mờ Cấu trúc luận văn Mở đầu: Trình bày tổng quan đề tài Chương 1: Cơ sở lý thuyết: trình bày lý thuyết liên quan sử dụng đồ án Chương 2: Đồ thị tri thức mờ: trình bày mơ hình đồ thị tri thức mờ, cách biểu diễn đồ thị tri thức mờ, suy diễn đồ thị tri thức mờ Chương 3: Cài đặt ứng dụng: chương em trình bày cài đặt mơ hình tri thức mờ, thực nghiệm liệu UCI, đánh giá mơ hình đồ thị tri thức mờ Kết luận: đánh giá công việc thực chưa thực trình làm luận văn, đề xuất hướng phát triển tương lai CHƯƠNG CƠ SỞ LÝ THUYẾT 1.1 Lý thuyết đồ thị Đồ thị xây dựng dựa đỉnh (hay nút), cung (cạnh) đường nối đỉnh đồ thị với Khi lập trình để biểu diễn máy tính người ta sử dụng nhiều cách khác Trong lĩnh vực sử dụng đồ thị nhiều như: Toán học, tin học, … Khi đồ thị phương pháp tỏ hiệu với toán ứng dụng thực tế Đồ thị giải toán thực tế như: giao thơng, du lịch, giáo dục,… Nó cơng cụ trực quan hóa để biểu diễn, diễn tả tốn Một đồ thị xây dựng có cấu trúc rời rạc, gồm thành phần: tập đỉnh tập cạnh Khi đồ thị: G=(V,E) Trong đồ thị gọi G, tập đỉnh gọi V, tập cạnh gọi E Mỗi cạnh đồ thị cặp (u,v) với đỉnh u nối với đỉnh v, hai đỉnh u, v thuộc vào tập V Người ta chia đồ thị dựa tính chất cạnh tập E: - Đồ thị G đơn đồ thị hai đỉnh (u,v) V có khơng q cạnh E để nối từ u tới v - Đồ thị G đồ thị đa cạnh đỉnh u đỉnh v V có từ hai cạnh E nối từ đỉnh u tới đỉnh v - Đồ thị G gọi đồ thị vô hướng (undirected graph) cạnh nối đỉnh u đỉnh v đồ thị không định hướng - Đồ thị có hướng G (directed graph) đồ thị cạnh nối đỉnh v với đỉnh u có định hướng, xác định chiều đường cạnh đồ thị Cạnh gọi cung đồ thị có hướng Nếu cạnh nối đỉnh u với đỉnh v đồ thị tương ứng với cung là: (u→v), (v→u) Khi đồ thị vơ hướng coi đồ thị có hướng 10 1.2 Logic mờ Logic mờ xây dựng dựa lý thuyết mờ sử dụng để suy luận, lập luận dựa việc xấp xỉ thay lập luận xác logic (như lập luận tiến, lập luận lùi) Logic mờ sử dụng mặt ứng dụng lý thuyết mờ để xử lý giá trị mờ giới thực tốn thực tế [1,2,3,4] Độ xác thường hay nhầm lẫn với xác suất Nhưng, hai khái niệm hồn tồn khác nhau, độ xác logic mờ khả xảy biến cố hay điều kiện mà việc biểu diễn độ liên thuộc với tập định nghĩa không rõ ràng Logic mờ xây dựng dựa độ thuộc có miền giá trị đoạn [0,1], biểu diễn câu khơng xác giới thực như: “hơi nhanh”, “rất nhanh”, “hơi chậm”, “rất chậm”, “chậm chút”… Khi đó, phép tốn tập hợp khơng xác định đầy đủ quan hệ câu với Do vậy, quan hệ lý thuyết xác suất logic mờ có liên quan tới Ý tưởng Logic mờ giáo sư Lotfi Zadeh Đại học California- Berkeley xây dựng từ năm 1965 Tuy ứng dụng thành công nhiều lĩnh vực, tồn nhiều nhược điểm khác tảng toán học, dẫn đến số nghiên cứu khoa học logic mờ không rõ luận vững mà thực thông qua thực nghiệm giới thực Nó bị phủ nhận số kỹ sư ngành điều khiển tự động khả thẩm định số lý khác Trong tốn học người ta ln mong muốn xây dựng tảng vững tảng, thực tế có số tượng, vật sai hoàn cảnh, thời điểm khác mơ hình tốn học biểu diễn khơng đầy đủ tồn vẹ Ví dụ lĩnh vực thống kê, nhà thống kê khẳng định có xác suất thể cho khơng chắn cho chặt chẽ tốn học không gian vô hạn, thực tế thứ có giới hạn, xác

Ngày đăng: 16/11/2023, 10:26

HÌNH ẢNH LIÊN QUAN

Hình 1. 1: Hàm thuộc cơ bản trong logic mờ - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 1. 1: Hàm thuộc cơ bản trong logic mờ (Trang 11)
Hình 1. 2: Mô hình suy luận mờ với một giả thiết và một luật - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 1. 2: Mô hình suy luận mờ với một giả thiết và một luật (Trang 17)
Hình 1. 3: Mô hình suy luận mờ nhiều giả thiết và một luật - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 1. 3: Mô hình suy luận mờ nhiều giả thiết và một luật (Trang 18)
Hình 1. 4: Mô hình suy luận mờ có giả thiết với hai luật - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 1. 4: Mô hình suy luận mờ có giả thiết với hai luật (Trang 19)
Hình 1. 5: Đồ thị tri thức mờ. - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 1. 5: Đồ thị tri thức mờ (Trang 20)
CHƯƠNG 2. ĐỒ THỊ TRI THỨC  MỜ 2.1. Mô hình đồ thị tri thức mờ trong phân lớp dữ liệu - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
2. ĐỒ THỊ TRI THỨC MỜ 2.1. Mô hình đồ thị tri thức mờ trong phân lớp dữ liệu (Trang 26)
Hình 2. 2: Sơ đồ tổng quan hệ suy diễn mờ - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 2. 2: Sơ đồ tổng quan hệ suy diễn mờ (Trang 29)
Bảng 2. 1: Hệ luật mờ - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 2. 1: Hệ luật mờ (Trang 31)
Hình 2. 3: Biểu diễn đồ thị tri thức mờ từ luật mờ theo thuộc tính - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 2. 3: Biểu diễn đồ thị tri thức mờ từ luật mờ theo thuộc tính (Trang 32)
Hình 2. 4: Biểu diễn đồ thị tri thức mờ 2.4. Suy diễn trên đồ thị tri thức mờ - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 2. 4: Biểu diễn đồ thị tri thức mờ 2.4. Suy diễn trên đồ thị tri thức mờ (Trang 33)
Hình 2. 5: Quá trình suy diễn trên đồ thị tri thức mờ - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 2. 5: Quá trình suy diễn trên đồ thị tri thức mờ (Trang 35)
Bảng 2. 2. Tập dữ liệu đầu vào - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 2. 2. Tập dữ liệu đầu vào (Trang 38)
Bảng 2. 3: Bộ dữ liệu đầu vào - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 2. 3: Bộ dữ liệu đầu vào (Trang 39)
Hình 2. 6: Đồ thị FKG cho 6 luật - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 2. 6: Đồ thị FKG cho 6 luật (Trang 42)
Đồ thị FKG cho 6 luật được mô tả trong Hình 2.6 sau đây: - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
th ị FKG cho 6 luật được mô tả trong Hình 2.6 sau đây: (Trang 42)
Bảng 2. 4: Bảng ma trận xân dựng đồ thị từ luật - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 2. 4: Bảng ma trận xân dựng đồ thị từ luật (Trang 42)
Bảng 2. 6: Bảng tính giá trị C với nhãn 2 - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 2. 6: Bảng tính giá trị C với nhãn 2 (Trang 43)
Bảng 3. 1: Các thuộc tính dữ liệu đầu vào trong tập dữ liệu bệnh ung thư - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 3. 1: Các thuộc tính dữ liệu đầu vào trong tập dữ liệu bệnh ung thư (Trang 48)
Bảng 3. 3: Các thuộc tính dữ liệu đầu vào trong tập dữ liệu cây Diên Vĩ Iris - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 3. 3: Các thuộc tính dữ liệu đầu vào trong tập dữ liệu cây Diên Vĩ Iris (Trang 49)
Bảng 3. 5: Dữ liệu Y học cổ truyền - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 3. 5: Dữ liệu Y học cổ truyền (Trang 51)
Hình 3. 1: Mô hình cho bài toán hỗ trợ chẩn đoán bệnh trong y học cổ truyền - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 3. 1: Mô hình cho bài toán hỗ trợ chẩn đoán bệnh trong y học cổ truyền (Trang 52)
Bảng 3. 7: Kết quả thực nghiệm thời gian trên bộ dữ liệu UCI - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Bảng 3. 7: Kết quả thực nghiệm thời gian trên bộ dữ liệu UCI (Trang 54)
Hình 3. 2: Đồ thị tri thức mờ với bệnh án Y học cổ truyền - (Luận văn thạc sĩ) nghiên cứu đồ thị tri thức mờ và ứng dụng vào bài toán phân lớp dữ liệu
Hình 3. 2: Đồ thị tri thức mờ với bệnh án Y học cổ truyền (Trang 55)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w