1. Trang chủ
  2. » Luận Văn - Báo Cáo

Graphene materials  fundamentals and engineering applications

424 3 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 424
Dung lượng 7,05 MB

Nội dung

Tai ngay!!! Ban co the xoa dong chu nay!!! Graphene Materials Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106 Advanced Materials Series The Advanced Materials Series provides recent advancements of the fascinating field of advanced materials science and technology, particularly in the area of structure, synthesis and processing, characterization, advanced-state properties, and applications The volumes will cover theoretical and experimental approaches of molecular device materials, biomimetic materials, hybrid-type composite materials, functionalized polymers, supramolecular systems, information- and energy-transfer materials, biobased and biodegradable or environmental friendly materials Each volume will be devoted to one broad subject and the multidisciplinary aspects will be drawn out in full Series Editor: Dr Ashutosh Tiwari Biosensors and Bioelectronics Centre Linköping University SE-581 83 Linköping Sweden E-mail: ashutosh.tiwari@liu.se Publishers at Scrivener Martin Scrivener(martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com) Graphene Materials Fundamentals and Emerging Applications Edited by Ashutosh Tiwari and Mikael Syväjärvi Copyright © 2015 by Scrivener Publishing LLC All rights reserved Co-published by John Wiley & Sons, Inc Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com For more information about Scrivener products please visit www.scrivenerpublishing.com Cover design by Russell Richardson Library of Congress Cataloging-in-Publication Data: ISBN 978-1-118-99837-3 Printed in the United States of America 10 Contents Preface Foreword by Rosita Yakimova xv xix Part 1: Fundamentals of Graphene and Graphene-Based Nanocomposites 1 Graphene and Related Two-Dimensional Materials Manas Mandal, Anirban Maitra, Tanya Das and Chapal Kumar Das 1.1 Introduction 1.2 Preparation of Graphene Oxide by Modified Hummer’s Method 1.3 Dispersion of Graphene Oxide in Organic Solvents 1.4 Paper-like Graphene Oxide 1.5 Thin Films of Graphene Oxide and Graphene 1.6 Nanocomposites of Graphene Oxide 1.7 Graphene-Based Materials 1.8 Graphene-like 2D Materials 1.8.1 Tungsten Sulfide 1.8.1.1 Different Methods for WS2 Preparation 1.8.1.2 Properties of WS2 1.8.1.3 WS2 and Reduced Graphene Oxide Nanocomposites 1.8.2 Molybdenum Sulfide 1.8.3 Tin Sulfide 1.8.4 Tin Selenide 1.8.5 Manganese Dioxide 1.8.6 Nickel Oxide 1.8.7 Boron Nitride 1.9 Conclusion References 6 7 10 10 11 12 13 14 15 17 17 18 19 20 20 v vi Contents Surface Functionalization of Graphene Mojtaba Bagherzadeh and Anahita Farahbakhsh 2.1 Introduction 2.2 Noncovalent Functionalization of Graphene 2.3 Covalent Functionalization of Graphene 2.3.1 Nucleophilic Substitution Reaction 2.3.2 Electrophilic Substitution Reaction 2.3.3 Condensation Reaction 2.3.4 Addition Reaction 2.4 Graphene–Nanoparticles 2.4.1 Metals NPs: Au, Pd, Pt, Ag 2.4.2 Metal oxide NPs: ZnO, SnO2, TiO2, SiO2, RuO2, Mn3O4, Co3O4, and Fe3O4 2.4.3 Semiconducting NPs: CdSe, CdS, ZnS, CdTe and Graphene QD 2.5 Conclusion References Architecture and Applications of Functional Three-dimensional Graphene Networks Ramendra Sundar Dey and Qijin Chi 3.1 Introduction 3.1.1 Synthesis of 3D Porous Graphene-Based Materials 3.1.1.1 Self-assembly Approach 3.1.1.2 Template-assisted Synthesis 3.1.1.3 Direct Deposition 3.1.1.4 Covalent Linkage 3.1.2 Overview of 3DG Structures 3.1.2.1 3DG Framework 3.1.2.2 3DG Sphere or Ball 3.1.2.3 3DG Film 3.1.2.4 3DG Fibre 3.2 Applications 3.2.1 Supercapacitor 3.2.1.1 Battery 3.2.2 Fuel Cells 3.2.3 Sensors 3.2.4 Other Applications 3.3 Summary, Conclusion, Outlook Abbreviations References 25 25 27 34 34 41 42 50 51 54 54 56 58 58 67 68 69 69 70 71 72 73 73 74 75 76 77 77 88 91 92 93 93 94 94 Contents vii Covalent Graphene-Polymer Nanocomposites Horacio J Salavagione 4.1 Introduction 4.2 Properties of Graphene for Polymer Reinforcement 4.3 Graphene and Graphene-like Materials 4.4 Methods of Production 4.5 Chemistry of Graphene 4.6 Conventional Graphene Based Polymer Nanocomposites 4.7 Covalent Graphene-polymer Nanocomposites 4.8 Grafting-From Approaches 4.8.1 Living Radical Polymerizations 4.8.2 Other Approaches 4.9 Grafting-to Approaches 4.9.1 Graphene Oxide-based Chemistry 4.9.2 Crosslinking Reactions 4.9.3 Click Chemistry 4.9.4 Other Grafting-to Approaches 4.10 Conclusions References 101 102 103 104 108 109 112 114 115 123 126 127 130 131 137 140 141 Part 2: Emerging Applications of Graphene in Energy, Health, Environment and Sensors 151 Magnesium Matrix Composites Reinforced with Graphene Nanoplatelets Muhammad Rashad, Fusheng Pan and Muhammad Asif 5.1 Introduction 5.1.1 Magnesium 5.1.2 Metal Matrix Composites 5.1.3 Graphene Nanoplatelets (GNPs) 5.2 Effect of Graphene Nanoplatelets on Mechanical Properties of Pure Magnesium 5.2.1 Introduction 5.2.2 Synthesis 5.2.3 Microstructural Characterization 5.2.4 Crystallographic Texture Measurements 5.2.5 Mechanical Characterization 5.2.6 Conclusions 101 153 154 154 154 155 156 156 157 157 158 160 163 viii Contents 5.3 Synergetic Effect of Graphene Nanoplatelets (GNPs) and Multi-walled Carbon Nanotube (MW-CNTs) on Mechanical Properties of Pure Magnesium 5.3.1 Introduction 5.3.2 Synthesis 5.3.3 Microstructure Characterization 5.3.3.1 Raw Materials 5.3.3.2 Microstructure of Composites 5.3.4 Mechanical Characterization 5.3.5 Conclusions 5.4 Effect of Graphene Nanoplatelets (GNPs) Addition on Strength and Ductility of Magnesium-Titanium Alloys 5.4.1 Introduction 5.4.2 Synthesis 5.4.2.1 Primary Processing 5.4.2.2 Secondary Processing 5.4.3 Microstructure Characterization 5.4.4 Mechanical Characterization 5.4.5 Conclusions 5.5 Effect of Graphene Nanoplatelets on Tensile Properties of Mg–1%Al–1%Sn Alloy 5.5.1 Introduction 5.5.2 Synthesis 5.5.3 Microstructure Characterization 5.5.4 Mechanical Characterization 5.5.5 Conclusions Acknowledgments References Graphene and Its Derivatives for Energy Storage Malgorzata Aleksandrzak and Ewa Mijowska 6.1 Introduction 6.2 Graphene in Lithium Batteries 6.2.1 Lithium Ion Batteries 6.2.2 Lithium-Oxygen Batteries 6.2.3 Lithium-Sulfur Batteries 6.3 Graphene in Supercapacitors 6.4 Summary References 164 164 165 166 166 166 169 174 175 175 176 176 176 176 178 179 180 180 180 180 181 184 184 185 191 191 192 193 201 206 212 218 218 388 Graphene Materials 31 M Q Israr, K ul Hasan, J R Sadaf, I Engquist, O Nur, M Willander, and B Danielsson, J Biosens Bioelectron., 2:3 http://dx.doi.org/10.4172/21556210.1000109, 2011 32 H B Nguyen, V C Nguyen, V T Nguyen, H D Le, V Q Nguyen, T T T Ngo, Q P Do, X N Nguyen, N M Phan, and D L Tran, Adv Nat Sci.: Nanosci Nanotechnol., Vol 4, 015013 (4pp) doi:10.1088/2043-6262/4/1/015013, 2013 33 F Zhang, X Wang, S Ai, Z Sun, Q Wan, Z Zhu, Y Xian, L Jin, and K. Yamamoto, Anal Chim Acta, Vol 519, p 155, 2004 34 S U Ali, N U H Alvi, Z H Ibupoto, O Nur, M Willander, and B Danielsson, Sens Actuators B-Chem., Vol 152, p 241, 2011 35 S M U Ali, Z H Ibupoto, C.O Chey, O Nur, and Magnus Willander, Chem Sens., Vol 1, p 19, 2011 36 N Tzamtzis, V N Psychoyios, G.-P Nikoleli, D P Nikolelis, N Psaroudakis, M Willander, and M Q Israr, Electroanal., Vol 24, p 1719, 2012 37 X Lu, H Zhang, Y Ni, Q Zhang, and J Chen, Biosens Bioelectron., Vol 24, p 93, 2008 38 C Xiang, Y Zou, L.-X.Sun, and F Xu, Sens Actuators B-Chem., Vol 136, p. 158, 2009 39 B X Gu, C X Xu, G P Zhu, S Q Liu, L Y Chen, M L Wang, and J J Zhu, J Phys Chem B, Vol 113, p 6553, 2009 40 Q Zeng, J Cheng, L Tang, X Liu, Y Liu, J Li, and J Jiang, Adv Funct Mater., Vol 20, p 3366, 2010 41 N Palomera, M Balaguera, S K Arya, S Hernández, M S Tomar, J E Ramírez-Vick, and S, P Singh, J Nanosci Nanotechnol., Vol 11, p 6683, 2011 42 R K Srivastava, S Srivastava, T N Narayanan, B D Mahlotra, R Vajtai, P. M Ajayan, and A Srivastava, ACS Nano, Vol 6, p 168, 2012 43 G.-P Nikoleli, M Q Israr, N Tzamtzis, D P Nikolelis, M Willander, and N. Psaroudakis, Electroanal., Vol 24, p 1285, 2012 44 C Shan, H Yang, D Han, Q Zhang, A Ivaska, and L Niu, Biosens Bioelectr., Vol 25, p 1504, 2010 45 K Guo, K Qian, S Zhang, J Kong, C Yu, and B Liu, Talanta, Vol 85, p.1174, 2011 46 Y Lei , N Luo , X Yan , Y Zhao , G Zhang, and Y Zhang, Nanoscale, Vol 4, p 3438, 2012 47 Z H Ibupoto, S M Usman A Shah, K Khun, and M Willander, Sensors, 12, p 2456, 2012 48 Z H Ibupoto, S M Usman Ali, K Khun, and M Willander J Biosens Bioelectron., 2:3 http://dx.doi.org/10.4172/2155-6210.1000110, 2011 49 K Fooladsaz, M Negahdary, G Rahimi, A Habibi-Tamijani, S Parsania, H Akbari-dastjerdi, A Sayad, A Jamaleddini, F Salahi, and A Asadi, Int J Electrochem Sci., Vol 7, p 9892, 2012 50 A Fulati, S M U Ali, M Riaz, G Amin, O Nur, and M Willander, Sensors, Vol 9, p 8911, 2009 Applications of Graphene Electrodes in Health 389 51 M H.; Asif, A Fulati, O Nur, M Willander, C Brännmark, P Strålfors, S I Börjesson, and F Elinder, Appl Phys Lett., Vol 95, p 023703, 2009 52 M H Asif, S M Ali O Nur, M Willander, U H Englund and F Elinder, Biosens Bioelectron., Vol 26, p 1118, 2010 53 Y Jia, X.-B Yin, J Zhang, S Zhou, M Song, and K.-L Xing, Analyst, Vol 137, p 5866, 2012 54 Biotech Week, Dec 29 2010, “Hitachi, Ltd details research in bioelectronics.” 55 J.-H Ahn, S.-J Choi, J.-W Han, T J Park, S Y Lee, and Y.-K Choi, Nano Lett., Vol 10, p 2934, 2010 56 Y Ohno, K Maehashi , Y Yamashiro, and K Matsumoto, Nano Lett., Vol 9, p 3318, 2009 57 N Mohanty, and V Berry, Nano Lett., Vol 8, p 4469, 2008 58 P R Wallace, Phys Rev Vol 71, p 622, 1947 59 X Dong, Y Shi, W Huang, P Chen, and L.-J Li, Adv Mater., Vol 22, p 1649, 2010 60 R Stine, J T Robinson, P E Sheehan and Cy R Tamanaha, Adv Mater., Vol 22, p 5297, 2010 61 Z Yin, Q He, X Huang, J Zhang, S Wu, P Chen, G Lu, P Chen, Q Zhang, Q Yan, H Zhang, Nanoscale, Vol 4, p 293, 2012 62 S Mao, G Lu, K Yu, Z Bo, and J Chen, Adv Mater., Vol 22, p 3521, 2010 63 S Mao, K Yu, J Chang, D A Steeber, L E Ocola, and J Chen, Sci Rep 3, 1696; DOI:10.1038/srep01696 (2013) 64 Y Ohno, K Maehashi, and K Matsumoto, J Am Chem Soc., Vol 132, p. 18012, 2010 65 A Bonanni, A Huiling Loo, and M Pumera, Trends Anal Chem., Vol 37, p 12, 2012 66 A Bonanni, and M Pumera, ACS Nano, Vol 5, p 2356, 2011 67 Y Hu, F Li, X Bai, D Li, S Hua, K Wang, and L Niu, Chem Commun., Vol 47 p 1743, 2011 68 Y Hu, K Wang, Q Zhang, F Li, T Wu and L Niu, Biomaterials, Vol 33, p. 1097, 2012 69 M Pumera, Chem Soc Rev., Vol 39, p 4146, 2010 70 G S Wilson, and Y Hu, Chem Rev., Vol 100, p 2693, 2000 71 J Lu, L T Drzal, R M Worden, and I Lee, Chem Mater., Vol 19, p 6240, 2007 72 Y Wang, Y Shao, D W Matson, J Li, and Y Lin, ACS Nano, Vol 4, p 1790, 2010 73 C Fu, W Yang, X Chen, and D G Evans, Electrochem Commun., Vol 11, p 997, 2009 74 C Shan, H Yang, D Han, Q Zhang, A Ivaska, and L Niu Biosens Bioelectron., Vol 25, p 1070, 2010 75 Q Lu, X Dong, L.-J Li, and X Hu, Talanta, Vol 82, p 1344, 2010 76 H Xu, H Dai, and G Chen, Talanta, Vol 81, p 334, 2010 390 Graphene Materials 77 T Wang, Y Zhu, G Li, S Zhang, J Song, C Mao, J Wu, B Jin, and Y Tian, Sci China Chem., Vol 54, p 1645, 2011 78 Z Zhong, W Wu, D Wang, D Wang, J Shan, Y Qing, Z Zhang, Biosens Bioelectron., Vol 25, p 2379, 2010 79 D Du, L Wang, Y Shao, J Wang, M H Engelhard, and Y Lin, Anal Chem., Vol 83, p 746, 2011 80 B Su, J Tang, H Yang, G Chen, J Huang, and D Tang, Electroanalysis, Vol 23, p 832, 2011 81 J Tang, D Tang, Q Li, B Su, B Qiu, and G Chen, Anal Chim Acta, Vol 697, p 16, 2011 82 Q Wei, Z Xiang, J He, G Wang, H Li, Z Qian, and M Yang, Biosens Bioelectron., Vol 26, p 627, 2010 83 H Li, Q Wei, J He, T Li, Y Zhao, Y Cai, B Du, Z Qian, and M Yang, Biosens Bioelectron., Vol 26, p 3590, 2011 84 Q Wei, T Li, G Wang, H Li, Z Qian, and M Yang, Biomaterials, Vol 31, p. 7332, 2010 85 Y Cai, H Li, B Du, M Yang, Y Li, D Wu, Y Zhao, Y Dai, and Q Wei, Biomaterials, Vol 32, p 2117, 2011 86 D Du, Z Zou, Y Shin, J Wang, H Wu, M H Engelhard, J Liu, I A Aksay, and Y Lin, Anal Chem Vol 82, p 2989, 2010 87 K Liu, J.-J Zhang, C Wang, and J.-J Zhu, Biosens Bioelectron., Vol 26, p. 3627, 2011 88 G Wang, H Huang, G Zhang, X Zhang, B Fang, and L Wang, Anal Meth., Vol 2, p 1692, 2010 89 B Su, J Tang, J Huang, H Yang, B Qiu, G Chen, and D Tang, Electroanal., Vol 22, p 2720, 2010 90 Y Zhuo, Y.-Q Chai, R Yuan, L Mao, Y.-L Yuan, and J Han, Biosens Bioelectron., Vol 26, p 3838, 2011 91 E Paleček, and M Fojta, Anal Chem., Vol 73, p 74A, 2001 92 J P Tosar, G Brañas, and J Laíz, Biosens Biolectron., Vol 26, p 1205, 2010 93 C X Lim , H Y Hoh , P K Ang and K P Loh, Anal Chem., Vol 82, p 7387, 2010 94 M Pumera, T Sasaki and H Iwai, Chem Asian J., Vol 3, p 2046, 2008 95 A Ambrosi, and M Pumera, Phys Chem Chem Phys., Vol 12, p 8943, 2010 96 J Wang, Y Kwak, I Lee, S Maeng, and G.-H Kim, Carbon, Vol 50, p 4061, 2012 97 G Lu, S Park, K Yu, R S Ruoff, L E Ocola, D Rosenmann, and J Chen, ACS Nano, Vol 5, p 1154, 2011 98 V Dua, S P Surwade, S Ammu, S R Agnihotra, S Jain, K E Roberts, S Park R S Ruoff , and S K Manohar, Angew Chem Int Ed., Vol 49, p 2154, 2010 99 B H Chu, J Nicolosi, C F Lo, W Strupinski, S J Pearton, and F Ren, Electrochem Solid-State Lett., Vol 14, p K43, 2011 Applications of Graphene Electrodes in Health 391 100 J L Johnson, A Behnam, S J Pearton, and A Ural, Adv Mater., Vol 22, p 4877, 2010 101 W Li, X Geng, Y Guo, J Rong, Y Gong, L Wu, X Zhang, P Li, J Xu, G Cheng, M Sun, and L Liu ACS Nano, Vol 5, p 6955, 2011 102 M Gautam, and A H Jayatissa, Solid State Electron., Vol 78, p 159, 2012 103 A Esfandiar, S Ghasemi, A Irajizad, O Akhavan, and M R Gholami, Int J Hydrogen Energ., Vol 37, p 15423, 2012 104 S Mao, S Cui, G Lu, K Yu, Z Wen, and  J Chen, J Mater Chem., Vol 22, p 11009 2012 105 G Singh, A Choudhary, D Haranath, A G Joshi, N Singh, S Singh, and R. Pasricha, Carbon, Vol 50, p 385, 2012 106 L Zhou, F Shen, X Tian, D Wang, T Zhang and W Chen, Nanoscale, Vol 5, p 1564, 2013 107 S Deng, V Tjoa, H M Fan, H R Tan, D C Sayle, M Olivo, S Mhaisalkar, J Wei, and C H Sow, J Am Chem Soc., Vol 134, p 4905, 2012 108 X An, J C Yu, Y Wang, Y Hu, X Yu, and G Zhang, J Mater Chem., Vol 22, p 8525, 2012 109 X Huang, N Hu, R Gao, Y Yu, Y Wang, Z Yang, E S.-W Kong, H Wei, and Y Zhang J Mater Chem., Vol 22, p 22488, 2012 110 W K Jang, J Yun, H I Kim, and Y.-S Lee, Colloid Polym Sci., Vol 291, p. 1095, 2012 111 K Chen, G Lu , J Chang , S Mao, K Yu, S Cui, and J Chen, Anal Chem., Vol 84, p 4057, 2012 112 H G Sudibya, Q He, H Zhang, and P Chen, ACS Nano, Vol 5, p 1990, 2011 113 Z Q Zhao, X Chen, Q Yang, J H Liu, and X.-J Juang, Chem Commun., Vol 48, p 2180, 2012 114 H Zhou, X Wang, P Yu, X Chen, and L Mao, Analyst, Vol 137, p 305, 2012 115 I Ion, and A C Ion, Sens Actuators B-Chem., Vol 166-167, p 842, 2012 116 Y Wei, C Gao, F.-L Meng, H.-H Li, L Wang, J.-H Liu, and X.-J Huang, J Phy Chem C, Vol 116, p 1034, 2012 117 C Gao, X.-Y Yu, R.-X Xu, J.-H Liu, and X.-J Huang ACS Appl Mater Interfaces, Vol 4, p 4672, 2012 118 S.-J Li, Author VitaeC Qian, Author VitaeK Wang, Author VitaeB.-Y Hua, Author VitaeF.-B Wang, Author VitaeZ.-H ShengAuthor Vitae, and X.-H Xia, Sens Actuators B-Chem., Vol 174, p 441, 2012 119 B G Choi, H Park, T J Park, M H Yang, J S Kim, S.-Y Jang, N S Heo, S Y Lee, J Kong, and W H Hong, ACS Nano, Vol 4, p 2910, 2010 120 C Xu, J Wang, L Wan, J Lin, and X Wang, J Mater Chem., Vol 21, p. 10463, 2011 121 Z Liu, X Ma, H Zhang, W Lu, H Ma, and S Hou, Electroanal., Vol 24, p. 1178, 2012 122 G Zhu, P Gai, L Wu, J Zhang, X Zhang, J Chen, Chem Asian J., Vol 7, p. 732, 2012 392 Graphene Materials 123 Y Zhang, J Zhang, H Wu, S Guo, and J Zhang, J Electroanal Chem., Vol 681, p 49, 2012 124 Q Xu, X Li, Y Zhou, H Wei, X.-Y Hu, and Y Wang, Anal Meth., Vol 4, p. 3429, 2012 125 L Wu, D Deng, J Jin, X Lu, and J Chen, Biosens Bioelectron., Vol 35, p 193, 2012 126 Y Zhao, X Song, Q Song, and Z Yin, CrystEngComm, Vol 14, p 6710, 2012 127 W Si, W Lei, Y Zhang, M Xia, F Wang, and Q Hao, Electrochim Acta, Vol 85, p 295, 2012 128 L Zheng, Author VitaeL Xiong, Y Li, J Xu, X Kang, Z Zou, S Yang, and J Xia, Sens Actuators B-Chem., Vol 177, p 344, 2013 129 Y Wang, S Zhang, D Du, Y Shao, Z Li, J Wang, M H Engelhard, J Li, and Y Lin, J Mater Chem., Vol 21, p 5319, 2011 130 L Zhang, A D Zhang, D Du, and Y Lin, Nanoscale, Vol 4, p 4674, 2012 131 J M Gong, X J Miao, H F Wan, and D Song, Sens Actuators B-Chem., Vol 162, p 341, 2012 132 H Liang, X J Miao, and J M Gong, Electrochem Commun., Vol 20, p 149, 2012 133 K Zhang, G Song, L Yang, J Zhou, and B Ye, Anal Meth., Vol 4, p 4257, 2012 Index 4-aminophenol, 344 Acceptor, 254 Acteaminophen, 344 Active layer thickness, 249 Active region, 253 Addition reaction, 50–51 Aerogel, 69, 73, 74, 76, 80, 82, 84, 87, 88, 91 Agglomerates, 251 Agglomerations, 155 Alcohol dehydrogenase (ADH), 365, 370, 372 Aluminium oxides (Al2O3), 209, 210 AM 1.5G, 257 Amine-functionalized graphene, 195 Anchor, 251 Ascorbate oxidase, 365 ascorbic acid, 344–345 Atom transfer radical polymerization (ARTP), 41, 115–117, 120, 135 Atomic Force Microscopy (AFM), 270 Au, 206 Band gap, 249, 250 Battery, 77, 83, 88, 91, 93 Bending, 265 Bimetallic nanocatalysts, 282 Biosensor, 69, 92, 93 Biosensors, 278–279 Bisphenol A, 344 Blood compatibility, 31 Blue shift, 263 Boron doped graphene, 195 Boron nitride, 19–20 Bulk heterojunction, 252–253 Carbon nanotube (CNT), 25, 39, 54 Carbon nanotubes (CNTs), 364, 370, 376 Carbon supported materials, 282–284 Carcinoembryonic antigen (CEA), 373, 374 Catalase (CAT), 365 Catechol (CC), 381, 383 Challenges, 347–351 Charge carrier recombination, 252, 271 Chemical Vapor Deposition (CVD), 68, 71–76, 82–86, 92, 93, 330–331 Chemically converted graphene (CCG), 29, 31, 39, 51 Chemically reduced GO (CRGO), 364, 370, 375, 383 Cholesterol oxidase (ChOx), 365, 371, 372, 373 Click chemistry CuAAC reactions, 109, 131–136 thiol-yne reactions, 109, 131, 136 Co3O4, 206, 214 concanavalin A, 343 Condensation reaction, 42–50 Conventional graphene/polymer nanocomposites 393 394 Index in-situ polymerization, 110, 111 melt-compounding, 110, 111 solution blending, 110–112 Copper phthalocyanine (CuPc), 28, 33 Covalent functionalization, of graphene, 34–51 addition reaction, 50–51 condensation reaction, 42–50 electrophilic substitution reaction, 41–42 nucleophilic substitution reaction, 34–41 Covalent graphene/polymer materials gGrafting-from approaches, 114–126 grafting-to approaches, 126–140 Cross-linking chemistry, 130, 131 Crumbled graphene, 75 Crystal structure, 251 Crystallite size, 260 Crystallographic texture, 158 Decabromodiohenyl ether, 343 Defects, 194, 202–205 Device architecture, 252–253 Dielectric, 19 Diffusion coefficient, 162 Direct deposition, 69, 71 Direct electron transfer (DET), 369, 370, 384 Dislocation density, 161 Disordered graphene, 194 DNA/Proteins/Cells, 341–343 Donor, 254 dopamine, 344–345 Edge-plane pyrolytic graphite (EPPG), 376 Edges, 194, 205 Electrical double layer capacitor (EDLC), 212, 213 Electrochemical impedance spectroscopy (EIS), 367 Electrochemical measurements, 293, 310 Electrochemical Sensing/ Biosensing, 336–347 Electrochemically reduced GO (ERGO), 364 Electrochemistry, 333–335 Electrode materials, 335 Electrophilic substitution reaction, 41–42 Electrostatic interactions, 26, 27, 52, 54, 58 Energy storage, 227 Epitaxial graphene (EG), 375 Epoxy polymers, 111, 130, 140 Ethanol Oxidation Reaction (EOR), 280–281, 310, 312–319 Exciton diffusion length, 247 Exfoliation, 328–330 Explosives, 344, 346 External Quantum Efficiency (EQE), 271 Fe2O3, 204–206 Fe3O4, 198 FETs, 19–20 Field-effect transistors (FET), 365, 366, 367, 379 Fill factor, 272 Fourier Transform Infrared spectroscopy (FTIR), 38, 263 Fuel cell, 77, 86, 90, 93 Fuel cells, 280–281 Fullerene, 252 Functional groups, 194, 202–205, 208, 264 Functionalized graphene hydrogels, 216 Functionalized multilayered graphene (MLG), 373 Galactose oxidase, 365 Generations of solar cell, 246–247 Glucose, 336–341 Glucose oxidase (GOx), 365, 369, 370, 384 Glutamate dehydrogenase (GLDH), 365373 GO-based chemistry, 127–130 Gold nanoparticles (AuNPs), Index 366, 370, 375, 379, 383 Grafting of growing radical polymers, 138–140 Graphene, 153, 231–232, 250–252, 326–327, 332 band gap, 250 carrier mobility, 250 surface area, 250 thermal conductivity, 250 Graphene functionalization, 108, 109 Graphene nano platelets, 153–156, 164, 172–176, 180 Graphene nanosheets (GNS), 25, 31, 56 Graphene oxide (GO), 25–27, 29, 33, 38–41, 54, 68–77, 79–81, 86, 364, 370, 375, 383 Graphene production bottom-up methods, 106 top-down methods, 106, 107 Graphene-based nanocomposites, 326–327, 332 Graphene–nanoparticles, 51–58 Graphene-polymer, 232 Graphene-polypyrrole, 233–240 Graphene-single-walled carbon nanotubes, 212 Graphene-zirconium doped ceria, 206 Graphite nanoplatelets (xGnP), 369, 380, 381 Graphite nanosheets (GNSs), 369, 372, 382, 383 H2O2 detection, 278–279, 293, 301–304 Hexagonal, 251 Horseradish peroxidase (HRP), 365, 370, 371, 382 Horseradish peroxide (HRP), 37 Human immunodeficiency virus (HIV-1), 368 Hybrid assemblies, 251 Hydrogel, 71, 73, 74, 78, 80, 81, 83, 85, 87, 92 Hydrogen peroxide, 344 Hydrophilic nanographene (NGP), 382 395 Hydrophobic, 266 Hydrothermal, 70, 74, 77, 79, 80, 82–88, 91, 252 IgE, 366, 367 Immunoglobulin G (IgG), 366 Indium Tin Oxide (ITO), 253 Inorganic semiconductors absorption co-efficient, 248 dielectric-constant, 248 effective mass, 248 exciton binding energy, 248 exciton type, 248 excitonic radius, 248 Internal quantum efficiency, 253 Ionic liquid polymers (ILPs), 33–34 I-V characteristic, 267–269 Lactate oxidase, 365 Lattice fringes, 261, 262 Leavening, 76 Li adsorption, 193, 195 Li cluster, 194 Li diffusion, 193, 199 Li nucleation, 194 Li2C6, 193 Li2CO3, 203 Li2O2, 201–205 Li2S, 207 Li2S2, 207 Li6BC5, 195 LiO2, 205 Manganese dioxide, 17–18 Mechanical properties, 153, 169, 178, 181 Metal ions, 346–347 Metal matrix composites, 154 Metal NPs, 54 Metal oxide NPs, 54–56 Methanol Oxidation Reaction (MOR), 281–282, 310, 312–319 Methylene green (MG), 28, 31 Mn3O4, 197, 215 MnCO2O4-graphene, 206 MnO/ZnO, 198 MnO2, 197, 206, 215 396 Index Molybdenum sulfide, 14–15 Multiwalled carbon nanotubes, 153, 157, 164, 172–176 Multiwalled carbon nanotubes (MWCNTs), 376 Nanocrystals, 250 Nanoparticles (NPs), 51–58 metal oxide, 54–56 metals, 54 semiconducting, 56–58 Narrow size distribution, 261, 262 Ni foam, 71, 72, 79, 81–83, 85, 88 Ni(HCO3)2-RGO, 217 Nickel oxide, 18–19 Nicotinamide adenine dinucleotide (NADH), 31 NiO, 214 Nitrene chemistry, 137, 138 Nitrogen doped graphene, 195, 204, 210, 211 Noncovalent functionalization, of graphene, 27–34 Non-renewable resources, 246 Nucleolin, 343 Nucleophilic substitution reaction, 34–41 One-pot strategy, 52 Open circuit voltage, 254 Organic photovoltaic (OPV), 245, 247 Organic polymers absorption co-efficient, 248 dielectric-constant, 248 effective mass, 248 exciton binding energy, 248 exciton type, 248 excitonic radius, 248 Orowan looping, 160, 182 Oxygen evolution reaction (OER), 201, 203–206 Oxygen reduction reaction (ORR), 201, 203, 204, 206 Particle size, 260 Pesticides, 344 Photoluminescence, 263 Piezoelectric, 13, 14, 19–20 PL quenching, 269 Point-of care (POC), 362, 367, 385, 386 Poly(2-(diethylamino) ethyl methacrylate) (PDEA), 119–121 Poly(2-(ethyl(phenyl)amino) ethylmethacrylate) (PEMA), 119, 120 Poly-(2-dimethylaminoethyl methacrylate) (PDMAEMA), 119, 120 Poly(3,4-ethylenedioxythiophen e):polystyrene sulphonate (PEDOT:PSS), 135 Poly(3-hexylthiophene) (P3HT), 119, 135 Poly(4-vynilpyridine)(P4VP), 132, 133 Poly(acrylic acid-co-acrylamide), 111 Poly(dimethylsiloxane) (PDMS), 111 Poly(glycidyl methacrylate) (PGMA), 139 Poly(methacrylic acid)(PMAA), 132 Poly(methyl methacrylate) (PMMA), 111, 117, 119, 123, 124, 132, 133, 137, 140 Poly(N-isopropyl acrylamide) (PNIPAM), 122, 123, 128, 134, 140 Poly(N-isopropyl acrylamide-coacrylic acid) (PNIPAMco-AA), 129, 134, 137 Poly(N-Isopropylacrylamide) (PNIPAAM), 28, 29 Poly(N-vinylcarbazole) (PVK), 122 Poly(oxyalkylene) amines (POA), 39 Poly(propyleneimine) dendrimers, 30 Poly(sodium methacrylic acid) (PMANa), 111 Poly(styrene-b-ethylene-co-butylenebstyrene) (SEBS), 134 Poly(styrenesulfonic acid-g-pyrrole) (PSSA-g-PPY), 30 Poly(ter-butyl acrylate) (PtBA), 119 Index Poly(ter-butyl methacrylate) (PtBMA), 123 Poly(vinyl alcohol) (PVA), 47 Poly(ε-caprolactone) (PCL), 124, 134 Poly[poly(ethylene glycol) ethylether methacrylate] (PPEGEEMA), 123 Polyacrylonitrile (PACN), 124 Polyetherketones (PEEK), 126 Polyethylene (PE), 136 Polyethylene glycol (PEG), 130 Poly-L-lysine (PLL), 34, 35 Polymeric ionic liquid (PIL), 370 Polypropylene (PP), 130 Polypyrrole (PPy), 124 Polystyrene(PS), 111, 116–118, 122– 125, 130, 132–134, 137, 138 Polysulfide(s), 207–212, 218 Polyurethane (PU), 111, 125, 126 Polyvinyl alcohol (PVA), 127, 138 Polyvinyl chloride (PVC), 128, 129 Porous graphene, 67, 69, 74–76, 80–84, 88, 90, 92, 93 Post-graphenization strategy, 51–52 Power conversion efficiency, 254 Pre-graphenization strategy, 51 Pristine graphene, 364, 376 Processing techniques, 249 Prostate specific antigen (PSA), 374 Pseudocapacitor, 212, 213 Pt, 206 PtRu bimetallic nanoparticles, 280–281, 292–293, 309 Pyrenebutyric Acid (PBA), 28, 29 Pyrene-Containing Hydroxypropyl Cellulose (PYRNHS), 28, 31, 33 Raman, 265 D-band, 265 G-band, 265 intensity ratio, 265 Red shift, 263 Reduced graphene oxide, 27, 29, 33, 38 397 Reduced graphene oxide/single-walled carbon nanotube/polyaniline (RGO/CNT/PANI), 217 Renewable energy sources, 226–227 Renewable resources, 246 Resorcinol (RC), 381 Reversible addition-fragmentation chain transfer polymerization (RAFT), 115, 122, 132, 133 Roughness, 270 Ru, 206 Scanning electron microscopy, 157, 180 SEI (solid electrolite interphace), 194 Self-assembly, 69, 70, 75 Semi powder metallurgy method, 165 Semiconducting NPs, 56–58 Sensor, 67, 68, 69, 72, 85, 92 Series resistance, 255 Short circuit current, 254 Shunt resistance, 255 Silicates, 209 Silicon solar cell, 246–248 Single electron-transfer living radical polymerization (SET-LRP), 115, 122, 123 Single nucleotide polymorphism (SNP), 367, 375 Single-nucleotide polymorphism (SNP), 342 Small electroactive analytes, 344–347 Sn, 196 SnO, 197 SnO2, 196–198 SnO2-Fe2O3-RGO, 198, 199 Sodium carboxymethyl cellulose (SCMC), 33 Sodium dodecyl benzene sulfonate (SDBS), 31 Sodium lignosulfonate (SLS), 33 Sol–gel method, 57 Solvothermal, 70, 84 Square wave anodic stripping voltammetry (SWASV), 381 398 Index Stacked graphene nanofibers (SGNFs), 376 Stretching, 265 Sulfonated polyaniline (SPANI), 28, 29 Sulfur anchoring on graphene/ cellulose, 211 Sulfur doped graphene, 204 Sulfur nanoparticles, 210 Supercapacitor, 4, 13, 17, 19, 67, 77–83, 87, 88, 90, 93 Supercapcitor, 225, 228–231, 239–240 Superparamagnetic iron oxide nanoparticle (Fe3O4), 55 Surface area measurements, 300, 311–312 Surface functionalization, of graphene, 25–58 covalent, 34–51 noncovalent, 27–34 Synergetic effect, 164 Template-assisted Synthesis, 70 Tetramethylethylenediamine (TMEDA), 43 Thermally reduced graphene (TRGO), 364, 366, 381 Thin film solar cell, 246–247 Thioglycolic acid (TGA), 379 Three-dimensional graphene (3DG), 68, 70–80, 85, 87–93 ball (3DGB), 73, 74, 75 fiber, 73, 76, 77 film, 73, 75 framework (3DGF), 73, 74, 77, 78, 80 sphere (3DGS), 73, 74 Three-dimensional graphene foam (3D GF), 289–291, 295–297, 311 Three-dimensional reduced graphene oxide (3DrGO), 69, 70, 74, 90, 93 Thrombin, 343 Tin selenide, 17 Tin sulfide, 15–16 TiO2, 199, 200 Toxoplasma gondii-specific IgM, 343 Transmission electron microscopy, 155, 169 Triphenylamine-based polyazomethine (TPAPAM), 46 Tumor cells, 343 Tungsten sulfide, 10–14 Urease (Urs), 365, 373 Uric acid, 344–346 Uricase, 365 UV-visible absorption, 262–263 van der Waals interactions, 26, 27, 46, 58 Vanadium oxides (V2O5), 209, 213 Vander waals, 251 Vertically-oriented graphene (VG), 366, 367 Vibration, 264 Volume change, 214 Volume expansion, 193, 196, 197, 207, 211, 212, 218 Wurtzite, 251 X-ray photoelectron spectra (XPS), 34, 38 Zinc oxide, 250–252 Zinc phthalocyanine (ZnPc), 28, 33 ZnO, 216 ZnO graphene nanocomposite, 260, 262 α-fetoprotein, 343, 344 α-fetoprotein (AFP), 374 β-cobalt sulfide, 215 β-lactoglobulin, 343 Also of Interest Check out these published volumes in the Advanced Materials Series Advanced Theranostics Materials Edited by Ashutosh Tiwari and Jeong-Woo Choi Forthcoming 2015 ISBN: 978-1-118-99829-8 Advanced Functional Materials Edited by Ashutosh Tiwari and Lokman Uzun Forthcoming 2015 ISBN 978-1-118-99827-4 Advanced Catalytic Materials Edited by Ashutosh Tiwari and Salam Titinchi Published 2015 ISBN 978-1-118-99828-1 Graphene Materials Fundamentals and Emerging Applications Edited by Ashutosh Tiwari and Mikael Syväjärvi Published 2015 ISBN 978-1-118-99837-3 DNA Engineered Noble Metal Nanoparticles Fundamentals and State-of-the-art-of Nanobiotechnology By Ignác Capek Published 2015 ISBN 978-1-118-07214-1 Advanced Electrical and Electronics Materials Process and Applications By K.M Gupta and Nishu Gupta Published 2015 ISBN: 978-1-118-99835-9 Advanced Materials for Agriculture, Food and Environmental Safety Edited by Ashutosh Tiwari and Mikael Syväjärvi Published 2014 ISBN: 978-1-118-77343-7 Advanced Biomaterials and Biodevices Edited by Ashutosh Tiwari and Anis N Nordin Published 2014 ISBN 978-1-118-77363-5 Biosensors Nanotechnology Edited by Ashutosh Tiwari and Anthony P F Turner Published 2014 ISBN 978-1-118-77351-2 Advanced Sensor and Detection Materials Edited by Ashutosh Tiwari and Mustafa M Demir Published 2014 ISBN 978-1-118-77348-2 Advanced Healthcare Materials Edited by Ashutosh Tiwari Published 2014 ISBN 978-1-118-77359-8 Advanced Energy Materials Edited by Ashutosh Tiwari and Sergiy Valyukh Published 2014 ISBN 978-1-118-68629-4 Advanced Carbon Materials and Technology Edited by Ashutosh Tiwari and S.K Shukla Published 2014 ISBN 978-1-118-68623-2 Responsive Materials and Methods State-of-the-Art Stimuli-Responsive Materials and Their Applications Edited by Ashutosh Tiwari and Hisatoshi Kobayashi Published 2013 ISBN 978-1-118-68622-5 Other Scrivener books edited by Ashutosh Tiwari Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering Edited by Ashutosh Tiwari and Atul Tiwari Published 2013 ISBN 978-1-118-29032-3 Biomedical Materials and Diagnostic Devices Devices Edited by Ashutosh Tiwari, Murugan Ramalingam, Hisatoshi Kobayashi and Anthony P.F Turner Published 2012 ISBN 978-1-118-03014-1 Intelligent Nanomaterials Processes, Properties, and Applications Edited by Ashutosh Tiwari Ajay K Mishra, Hisatoshi Kobayashi and Anthony P.F Turner Published 2012 ISBN 978-0-470-93879-9 Integrated Biomaterials for Biomedical Technology Edited by Murugan Ramalingam, Ashutosh Tiwari, Seeram Ramakrishna and Hisatoshi Kobayashi Published 2012 ISBN 978-1-118-42385-1 WILEY END USER LICENSE AGREEMENT Go to www.wiley.com/go/eula to access Wiley’s ebook EULA

Ngày đăng: 02/11/2023, 11:58