...............................................................................................................................................................................................................................................................................................................................................................................................................................................
P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 12, 2007 xxvi Revise Pages 12:19 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 15, 2007 i Revise Pages 18:52 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 15, 2007 ii Revise Pages 18:52 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 12, 2007 Fundamentals of Materials Science and Engineering An Integrated Approach iii Revise Pages 21:10 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 12, 2007 THIRD EDITION Fundamentals of Materials Science and Engineering An Integrated Approach William D Callister, Jr Department of Metallurgical Engineering The University of Utah David G Rethwisch Department of Chemical and Biochemical Engineering The University of Iowa JOHN WILEY & SONS, INC v Revise Pages 21:10 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 18, 2007 Front Cover: Depiction of a boron nitride nanotube Red and blue spheres represent boron and nitrogen atoms, respectively Back Cover: Representation of a carbon nanotube, both ends of which are capped with C60 fullerene hemispheres Associate Publisher Acquisitions Editor Editorial Assistant Marketing Manager Senior Production Editor Senior Designer Cover Art Senior Illustration Editor Media Editor Dan Sayre Jennifer Welter Sandra Kim Chris Ruel Ken Santor Kevin Murphy Roy Wiemann Sigmund Malinowski Lauren Sapira This book was set in LaTeX by Aptara, Inc and printed and bound by Quebecor Versailles The cover was printed by Quebecor This book is printed on acid free paper ∞ Copyright © 2008 John Wiley & Sons, Inc All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (508)750-8400, fax (508)750-4470, Web site www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken NJ 07030-5774, (2012) 748-6011, fax (201) 748-6008, E-Mail: PERMREQ@WILEY.COM, Web site www.wiley.com/go/permissions To order books or for customer service please call 1(800)-CALL WILEY (225-5945) Library of Congress Cataloging-in-Publication Data Callister, William D., 1940– Fundamentals of materials science and engineering : an integrated approach / William D Callister ; with special contributions by David G Rethwisch.—3rd ed p cm Includes index ISBN 978-0-470-12537-3 (cloth) Materials I Rethwisch, David G II Title TA403.C227 2008 620.1 1—dc22 2007040687 Printed in the United States 10 vi Revise Pages 1:1 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 12, 2007 Dedicated to the memory of Genevieve Johns Callister, 1913–2007 vii Revise Pages 12:19 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 12, 2007 iv Revise Pages 12:19 P1: PBU/OVY P2: PBU/OVY GTBL042-Calister-FM QC: PBU/OVY T1: PBU Printer: tb-gts4c GTBL042-Callister-v3 October 12, 2007 viii Revise Pages 12:19 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 Index • 869 Hydrogen bonding, 28, 31, 32, 845 water expansion upon freezing, 33 Hydrogen chloride, 32, 36 Hydrogen electrode, 665–666 Hydrogen embrittlement, 687–688, 845 Hydrogen fluoride, 32, 36 Hydrogen induced cracking, 687 Hydrogen stress cracking, 687 Hydroplastic forming, 596, 845 Hydroplasticity, 594 Hydrostatic powder pressing, 600 Hypereutectoid alloys, 388–390, 845 Hypoeutectoid alloys, 386–388, 845 Hysteresis, 738 Hysteresis, ferromagnetic, 845 soft and hard magnetic materials, 741–742, 744–745 I Ice, 33, 344, 398 Impact energy, 310, 845 fine pearlite, 431 temperature dependence: high-strength materials, 313 low-strength FCC and HCP metals, 313 low-strength steels, 312, 313 Impact fracture testing, 310–314 Impact strength, polymers, 314 Imperfections See Defects; Dislocations Impurities: in ceramics, 135 diffusion, 163 electrical resistivity, 470–471 in metals, 133–135 thermal conductivity, 714 Incongruent phase transformation, 372 Index of refraction, 765–766, 845 selected materials, 767 Indices, Miller, 71–73, 847 Indium antimonide, electrical characteristics, 474 Induced dipoles, 31–32 Inert gases, 21, 23 Inhibitors, 689, 845 Initial permeability, 737 Injection molding, 608–609 Insulators (electrical), 845 See also Dielectric materials ceramics and polymers as, 496, 507 color, 772 defined, 463 electron band structure, 465, 466–467 translucency and opacity, 774–775 Integrated circuits, 494–495, 845 scanning electron micrograph, 460, 495 Interatomic bonding, 27–31 Interatomic separation, 25 Interconnects, integrated circuits, 178 Interdiffusion, 163, 845 Interfacial defects, 144–147 Interfacial energies, 147 for heterogeneous nucleation, 409 Intergranular corrosion, 684, 845 Intergranular fracture, 293, 296, 845 Intermediate solid solutions, 369, 373, 845 Intermetallic compounds, 369, 444, 845 Interplanar spacing, cubic crystals, 85 Interstitial diffusion, 164, 845 Interstitial impurity defects, 134 Interstitials: in ceramics, 135 in polymers, 136 self-, 129, 850 Interstitial solid solutions, 134, 845 Intrinsic carrier concentration, 475 temperature dependence for Si and Ge, 481 Intrinsic conductivity, 475 Intrinsic semiconductors, 474–477, 845 Invar, Material of Importance, 712 thermal properties, 709 Invariant point, 345, 357, 845 Inverse lever rule, 348 See also Lever rule Inverse spinel structure, 732 Ion cores, 30 Ionic bonding, 27–28, 845 in ceramics, 45 Ionic character (percent), 29, 45 Ionic conduction, 179, 463, 497 Ionic polarization, 504, 505, 849 Ionic radii, 46, 48 Iridium, 538 Iron, see also Ferrous alloys; Steels atomic radius and crystal structure, 40 bonding energy and melting temperature, 28 Curie temperature, 735 electrical conductivity, 469 ferrite (α), 380, 382, 387, 843 as ferromagnetic material, 729 magnetic properties, 744 magnetization curves (single crystal), 740 polymorphism, 61 recrystallization temperature, 268 rolling texture, 743 slip systems, 249 stress-strain behavior (at three temperatures), 206 thermal properties, 709 yield and tensile strengths, ductility, 205 Iron age, Iron-carbon alloys, see Ferrous alloys Iron-iron carbide alloys, 380–383 Iron-silicon alloys, magnetic properties, 744 Material of Importance (use in transformer cores), 743 Isobutane, 100 Isobutylene, 118 Isomerism, 99, 845 geometrical, 113–114, 115 stereoisomerism, 112–113, 115 Isomorphous systems, 345, 846 binary, see Binary isomorphous alloys Isoprene, 114 Isostatic powder pressing, 600 Isostrain, in fiber-reinforced composites, 628 Isostress, in fiber-reinforced composites, 631 Isotactic configuration, 112, 115, 846 Isothermal, 846 Isothermal transformation diagrams, 414–426, 846 4340 alloy steel, 424 0.76 wt% C steel, 423 1.13 wt% C steel, 456 Isotopes, 16, 846 Isotropic materials, 82, 635, 846 Izod impact test, 310–311, 846 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 870 • Index J Jominy end-quench test, 578–579, 846 Junction transistors, 492–493, 846 K Kaolinite clay, 56, 595 Kevlar, see Aramid Kinetics, 412–413, 846 crystallization of polymers, 447 oxidation, 693–694 phase transformations, 412–413 Knoop hardness, 224, 226 Kovar: as low-expansion alloy, 712 thermal properties, 709 L Ladder polymer, 698 Lamellae, 121 Laminar composites, 651, 846 Large-particle composites, 620–624, 846 Larson-Miller parameter, 330 Lasers, 778–781, 846 semiconductor, 779–780, 783 types, characteristics, and applications, 782 Laser beam welding, 574 Latent heat of fusion, 405 Latex, 557 Lattice parameters, 61, 62, 846 Lattices, 39, 846 Lattice strains, 246–247, 259–260, 446, 846 Lattice waves, 706–707 Laue photograph, 37, 86 Layered silicates, 55–57 Lay-up, in prepreg processing, 649 Lead, 538 atomic radius and crystal structure, 40 diffraction pattern, 87 recrystallization temperature, 268 superconducting critical temperature, 752 Lead-free solders, 362 Lead-tin phase diagram, 358, 361–369 Lead titanate, 550 Lead zirconate, 509 Lead-zirconate-titanate, 508 Leak-before-break design, 302 Leathery region, polymers, 220 LEDs, see Light-emitting diodes Lever rule, 348–350, 846 Life cycle analysis/assessment, 794 Light: absorption, 768–771 reflection, 767 refraction, 765–766 scattering, 774 transmission, 771–772 Light-emitting diodes, 846 organic, 777 polymer, 777 semiconductor, 776 Lime, 547 Linear atomic density, 75–76 Linear coefficient of thermal expansion, 325, 708–711, 716, 718, 846 values for selected materials, 709, 815–818 Linear defects, 140–144 Linear polymers, 110, 111, 846 Liquid crystal polymers, 560–561, 846 Liquidus line, 345, 346, 357, 846 Liquidus temperatures, Cu-Au system, 395 Lodestone (magnetite), 723, 731 Longitudinal direction, 627, 846 Longitudinal loading, composites, 627–629, 632 Lost-foam casting, 570, 572 Lost-wax casting, 572 Low-angle grain boundaries, see Small-angle grain boundaries Low-carbon steels, 518–519 Low-cycle fatigue, 319 Lower critical temperature (ferrous alloys), 576, 846 Lower yield point, 199, 200 Low-expansion alloys, 712 Luminescence, 775, 846 M Macromolecules, 100, 846 Magnesia, see Magnesium oxide Magnesium: diffraction pattern, 37 elastic and shear moduli, 193 Poisson’s ratio, 193 slip systems, 249 Magnesium alloys, 535, 536 Magnesium fluoride, optical properties, 767 Magnesium-lead phase diagram, 371 Magnesium oxide: bonding energy and melting temperature, 28 flexural strength, 205 index of refraction, 767 modulus of elasticity, 193 thermal properties, 709 Magnesium oxide-aluminum oxide phase diagram, 375 Magnetic anisotropy, 740–741 Magnetic ceramics, 731–735 Magnetic dipoles, 723–724 Magnetic domains, see Domains Magnetic energy product, 744–745 Magnetic field strength, 724, 725–726, 846 Magnetic field vectors, 724–726 Magnetic flux density, 724, 726, 846 critical values for superconductors, 752 Magnetic hysteresis, 736–740 factors that affect, 740 soft and hard magnetic materials, 741–747 Magnetic induction, see Magnetic flux density Magnetic materials: hard, 744–747 low thermal expansion characteristics, 712 neodymium-iron-boron alloys, 746–747 samarium-cobalt alloys, 746 soft, 741–744 Magnetic moments, 726–727 cations, 732 Magnetic permeability, 725, 726, 761, 766 Magnetic storage, 747–750 Magnetic susceptibility, 726, 846 selected diamagnetic and paramagnetic materials, 729 various units for, 726 Magnetic texture, 82 Magnetic units, conversion factors, 726 Magnetism: basic concepts, 723–727 electron spin and, 727 Magnetite (lodestone), 723, 731 Magnetization, 725–726, 846 easy and hard directions, 740–741 saturation, 730, 734, 846 Magnetocrystalline anisotropy, 740–741 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 18, 2007 Index • 871 Magnetostrictive materials, 12 Magnetorheological fluids, 12 Majority charge carriers, 479 Malleability, see Ductility Malleable cast iron, 526, 527, 529, 846 compositions, mechanical properties, and applications, 527 Manganese oxide, as antiferromagnetic material, 731 Manufacturing techniques, economics, 791 Martensite, 421–423, 427–428, 438, 846 alloying to favor formation of, 427–428 crystal structure, 422 hardness, 433–434 hardness vs carbon content, 433 shape-memory phase transformations, 439–440 tempering of, 434–437 Martensitic stainless steels, 522, 523 Materials: advanced, 10–13 by design, 12 classification of, 5–10 costs, 642, 829–833 current and future needs, 13 disposal of, 793–794 economic considerations, 790–791 engineered, 792 of the future, 11–13 historical development of, nanoengineered, 12–13 nonrenewable sources of, 13, 793 smart, 11–12 total cycle, 792–793 Materials engineering, 3–5, 187–188 Materials of Importance: aluminum electrical wires, 472–473 aluminum for integrated circuit interconnects, 178–179 carbon nanotubes, 60 carbonated beverage containers, 11 catalysts (and surface defects), 148 Invar and other low-expansion alloys, 712 an iron-silicon alloy that is used in transformer cores, 743 lead-free solders, 362 light-emitting diodes, 776–777 metal alloys used for euro coins, 539 nanocomposites in tennis balls, 653–654 phenolic billiard balls, 555 shape-memory alloys, 439–441 shrink-wrap polymer films, 278 tin (its allotropic transformation), 63 water (its volume expansion upon freezing), 33 Materials science, 3–5 Matrix phase, 847 definition, 619 fiber-reinforced composites, 637 Matthiessen’s rule, 469, 847 Mean stress (fatigue), 315–316, 323 Mechanical properties, see also specific mechanical properties grain size and, 270 variability, 229–231 Mechanical twins, 146–147, 255–256 See also Twinning Mechanics of materials, 192 Medium carbon steels, 520–521 Meissner effect, 751, 752 Melamine-formaldehyde, repeat unit structure, 834 Melting (polymers), 448 Melting point (temperature), glass, 590, 847 and bonding energy for selected materials, 28 ceramics, 590 factors that affect (polymers), 450–451 glasses, 847 polymers, 450–451, 838 Melt spinning, 610–611 Mercury: bonding energy and melting temperature, 28 superconducting critical temperature, 752 Mer unit, 100 Metal alloys, see Alloys Metallic bonding, 30, 847 Metallic glasses, 468 Metallographic examination, 150 Metal-matrix composites, 644–645, 847 Metals, see also Alloys; Crystalline materials corrosion, see Corrosion costs, 829–831 crystal structures, see Crystal structures defined, 5–6, 847 density values, 801–803 elastic modulus values, 193, 804–806 as electrical conductors, 463 electrical resistivity values, 824–826 electron band structure, 465 fabrication, 569–577 fracture toughness for selected, 300, 814 linear coefficient of thermal expansion values, 709, 815–816 optical properties, 764–765 oxidation, 691–694 Poisson’s ratio for selected, 193, 808 shear moduli, 193 specific heat values, 709, 822–823 strengthening, see Strengthening of metals thermal conductivity values, 709, 819–820 Metastability, 847 of microstructures, 413–414 Metastable states, 343 Methane, 28–29, 99 Methyl alcohol, 101 Methyl group, 103 Mica, 57 dielectric constant and dielectric strength, 500 Microconstituents, see also specific microconstituent phases: definition, 366, 847 in eutectic alloys, 366–369 in steel alloys, 384–391 Microcracks, 293–297 in ceramics, 304–305 Microelectromechanical systems (MEMS), 12, 547–548, 847 Microelectronics, 494–496 Microindentation hardness tests, 226 Micron, 149 Microscopic techniques, useful resolution ranges, 154 Microscopy, 149–154, 847 2nd Revise Page 20:15 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 872 • Index Microstructure, 149, 847 austenite, 382 bainite, 419 bonded ceramic abrasive, 546 brass during recrystallization and grain growth, 265–266 carbon-black-reinforced rubber, 622 carbon nanotube, 60 cast irons, 525–526, 528 cemented carbide, 622 coarse and fine pearlite, 418 compacted graphite iron, 526 craze in poly(phenylene oxide), 310 development in eutectic alloys, 361–369 development in iron-carbon alloys, 384–391 development in isomorphous alloys: equilibrium cooling, 351–353 nonequilibrium cooling, 353–355 eutectic (lead-tin), 365 ferrite (α), 382 glass fracture surface, 307 gray cast iron, 525 hypereutectoid steel alloy, 389 hypoeutectoid steel alloy, 339, 387 influence of cooling rate, 580 integrated circuit, 460, 495 magnetic storage disk, 748, 749 martensite, 422 metastable, 343 microscopic examination, 149–154 pearlite, 385, 418 pearlite partially transformed to spheroidite, 421 polycrystalline metal before and after deformation, 255 porcelain, 599 precipitation-hardened aluminum alloy, 400 single-phase iron-chromium alloy, 152 sintered ceramic, 602 size ranges, various structural features, 154 spheroidite, 420 spherulite (natural rubber), 97 stress corrosion in brass, 687 TEM (high resolution)–single crystals of (Ce0.5 Zr0.5 )O2 , 148 tempered martensite, 435 Microvoids, 290–291, 309 Miller-Bravais index system, 68–69 Miller indices, 70–73, 847 Minority charge carriers, 479 Mirror region, 307–308 Mist region, 307–308 Mixed dislocations, 141, 143, 244, 847 See also Dislocations Mobility, of charge carriers, 467–468, 847 influence of dopant content, 483–484 influence of temperature, 484–485 ionic, 497 values for selected semiconductors, 474 Modulus of elasticity, 192–194, 847 anisotropy, 82 atomic bonding and, 194–195, 237 carbon nanotubes, 60 copper reinforced with tungsten, 621 influence of porosity on, in ceramics, 213–214 ranges for material types (bar chart), relation to shear modulus, 197 selected ceramics, 193, 806 selected fiber-reinforcement materials, 636, 807 selected metals, 193, 804–806 selected polymers, 193, 806–807 temperature dependence: elastomers, 279 metals, 195 and thermal fatigue, 325 and thermal stresses, 716–718 values for various materials, 804–807 Modulus of resilience, 204–206 Modulus of rupture, 212 See also Flexural strength Mohs hardness scale, 222, 226, 227 Molarity, 664, 847 Molding, plastics, 608–610, 847 Mole, 17, 847 Molecular chemistry, polymers, 101–105, 847 Molecular configurations, polymers, 111–115 Molecular mass, 106 Molecular materials, 34 Molecular shape, polymers, 108–109 Molecular structure, polymers, 109–111, 847 Molecular weight, 847 influence on polymer melting/glass transition temperatures, 450–451 influence on mechanical behavior, polymers, 274, 276 number-average, 106–108 weight-average, 106–108 Molecular weight distribution, 106–107 Molecules, polar, 32, 848 Molybdenum, 536, 538 atomic radius and crystal structure, 40 density, 802 modulus of elasticity, 805 Poisson’s ratio, 808 properties as wire, 636 slip systems, 249 thermal properties, 816, 820, 823 yield and tensile strengths, ductility, 205 Moment of inertia, 211–212, 239, 642 Monel, 538 Monoclinic crystal system, 61, 62 Monomers, 100, 847 MOSFET transistors, 491, 493–494, 847 Mullite, 377, 544, 545 flexural strength, 205 modulus of elasticity, 193 Poisson’s ratio, 193 Muntz metal, 531 Muscovite (mica), 57 N Nanotechnology, 12–13 Nanotubes, carbon, 13, 60 Natural aging, 446, 847 Natural rubber (polyisoprene), 114, 552, 556 degradation resistance, 696 melting and glass transition temperatures, 838 stress-strain behavior, 280 thermal properties, 709 NBR, see Nitrile rubber (NBR) Necking, 201 complex stress state in, 208 in ductile fracture, 290–291 polymers, 217 Neel ´ temperature, 735 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 18, 2007 Index • 873 Neodymium-iron-boron magnets, 746–747 Neoprene rubber, 556, 696 Nernst equation, 667 Network formers (glass), 89 Network modifiers (glass), 89 Network polymers, 111, 847 Network solids, 59 Neutrons, 16 Nichrome, 472 Nickel, 538 atomic radius and crystal structure, 40 Curie temperature, 735 elastic and shear moduli, 193 as ferromagnetic material, 729–730 magnetization curves (single crystal), 740 Poisson’s ratio, 193 recrystallization temperature, 268 slip systems, 249 thermal properties, 709 thoria-dispersed (TD), 624 yield and tensile strengths, ductility, 205 Nickel ferrite, 733 Niobium, 536 Niobium alloys, as superconductors, 752 Nitinol, 439–441 Nitrile rubber (NBR), 117 characteristics and applications, 556 degradation resistance, 696 Noble metals, 538 Nodular iron, see Ductile iron Noncrystalline materials, 38, 87–89, 847 Nondestructive evaluation, see Nondestructive testing Nondestructive inspecting, see Nondestructive testing Nondestructive testing, 301 Nonequilibrium cooling, 391 Nonequilibrium phases, 412 Nonequilibrium solidification, 353–355 Nonferrous alloys, 530–540, 847 See also specific nonferrous alloys Nonsteady-state diffusion, 167–171, 847 Nonstoichiometry, 131 Normalizing, 428, 576, 847 Notches, effect of, 297 Notch toughness, 206, 310 n-p-n Junction transistors, 493 n-Type semiconductors, 477–479, 847 Nucleation, 402–410, 847 heterogeneous, 408–410 homogeneous, 402–408 Nucleation rate, 406 temperature dependence, 404–406 homogeneous vs heterogeneous, 410 Nucleus, phase particle, 403 Number-average molecular weight, 106–108 Nylon, fatigue behavior, 320 Nylon 6,6: 105 degradation resistance, 696 density, 126, 803 dielectric constant and dielectric strength, 500 electrical conductivity, 496 mechanical properties, 193, 205 melting and glass transition temperatures, 450, 838 repeat unit structure, 105, 836 thermal properties, 709 Nylons, trade names, characteristics, and applications, 553 O Octahedral position, 79, 732, 847 Ohm’s law, 461–462, 847 Oil, as quenching medium, 581–582 Opacity, 763, 847 in insulators, 774 in semiconductors, 768–769 Optical fibers, 548–549, 781–785, 847 Optical flint glass, composition and properties, 541, 767 Optical microscopy, 150–152 Optical properties, 760 of metals, 764–765 of nonmetals, 765–775 Ordered solid solution, 369, 531 Organic light-emitting diodes, 777 Orientation polarization, 504, 849 Orthorhombic crystal system, 61, 62 Osmium, 538 Overaging, 443, 848 Overvoltage, 671–675 Oxidation, 662–663, 848 kinetics, 693–694 metals, 691–694 Ozone, degradation of polymers, 696, 697–698 P Palladium, 166, 538 Paraffins, 99 Paramagnetism, 728, 848 Parisons, 591, 610 Particle-reinforced composites, 620–625, 848 Particulate magnetic recording media, 747–749 Pascal-second, 271 Passivity, 678–679, 848 Pauli exclusion principle, 21, 848 Pearlite, 384–385, 848 coarse, 417–418, 841 colonies, 385 as composite, 618 fine, 417, 431, 844 formation of, 385, 414–417, 428, 438 hardness vs transformation temperature, 433 mechanical properties, 430–434 Pentane, 99 Performance (materials), Periclase, 544, 545, see also Magnesium oxide Periodic table, 23–24, 848 Peritectic reaction, 371–372, 848 Permalloy (45), magnetic properties, 744 Permanent dipoles, 18, 20, 504–505 Permeability (in polymers), 179–181 Permeability coefficient, 179 Permeability, magnetic, 725–726, 761, 766, 848 Permittivity, 27, 499–500, 761, 766, 848 Perovskite structure, 51, 507, 753 PET, see Polyester(s) Phase boundaries, 146 Phase diagrams, 343–351, 848 binary eutectic systems, 356–369 binary isomorphous systems, 345–355 ceramic systems, 373–377 congruent phase transformations, 372–373 2nd Revise Page 20:15 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 874 • Index Phase diagrams (continued) definitions/basic concepts, 340–343 eutectoid and peritectic reactions, 371–372 intermediate phases in, 369, 371 interpretation of, 347–351 pressure-temperature (unary), 343–345 specific: aluminum-copper, 444 aluminum oxide-chromium oxide, 375 cast iron, 524 copper-beryllium, 458 copper-nickel, 346 copper-silver, 356, 379 copper-zinc, 370, 372 halfnium-vanadium, 373 iron-carbon (graphite), 524 iron-iron carbide, 381 lead-tin, 358, 361–369 magnesium-lead, 371 magnesium oxide-aluminum oxide, 375 nickel-titanium, 374 silica-alumina, 377 sugar-water, 341 tin-bismuth, 362 tin-gold, 397 water (pressure-temperature), 344, 398 water-sodium chloride, 359 zirconia-calcia, 376 ternary, 378 Phase equilibria, 342–343, 848 Phases, 341–342, 848 Phase transformation diagrams: continuous cooling, 841 metals, 426–429, 457 glass-ceramics, 542 isothermal, 414–426, 846 Phase transformation rate, 412 martensitic transformation, 422–423 temperature dependence, 411–412 Phase transformations, 848 athermal, 423 classification, 402 shape-memory effect, 439–440 Phenol, 101 Phenol-formaldehyde (Bakelite): in billiard balls, 516, 555 dielectric constant and dielectric strength, 500 electrical conductivity, 496 mechanical properties, 193, 205 repeat unit structure, 105, 834 thermal properties, 709 Phenolics, trade names, characteristics, and applications, 554 Phenyl group, 100, 101 Phonons, 707, 713, 714, 848 Phosphorescence, 775, 848 Photoconductivity, 775, 848 Photomicrographs, 150, 848 Photonic signal, 781 Photons, 707, 762, 848 Pickling, of steels, 688 Piezoelectricity, 550, 848 Piezoelectric ceramics, 508–509 as Materials of Importance, 550 properties and applications, 550 in smart materials/systems, 12 Pilling-Bedworth ratio, 692, 848 selected metals, 693 Pitting corrosion, 683–684, 848 Plain carbon steels, 423, 518, 848 Planar atomic density, 75–76 Planck’s constant, 762, 848 Planes, see Crystallographic planes Plane strain, 298, 848 Plane strain fracture toughness, 299, 300, 848 ceramic-matrix composites, 645–646 selected materials, 300, 814–815 Plaster of paris, 546, 572, 596 Plastic deformation, 199–210, 848 ceramics, 271–272 dislocation motion and, 243–256 in fracture, 290, 293 influence on electrical conductivity, 469, 471 polycrystalline materials, 253–255 semicrystalline polymers, 274–277 twinning, 255–256 Plasticizers, 606, 848 Plastics, 848 characteristics and applications, 552, 553–554 in composites, 621 forming techniques, 607–610 Platinum, 538 atomic radius and crystal structure, 40 electrical conductivity, 469 Plywood, 651 p-n-p Junction transistors, 492–493 p-n Junctions: for light-emitting diodes, 776–777 for rectification, 490–491 Point coordinates, 64–66 Point defects, 128–140, 848 Poise, 271 Poisson’s ratio, 196–199, 848 values for various materials, 193, 808–809 Polarization, 500–502, 848 See also Electronic polarization; Ionic polarization; Orientation polarization Polarization (corrosion), 671–675, 848 corrosion rates from, 675–678 Polar molecules, 32, 34, 848 Polyacetylene, repeat unit structure, 498 Polyacrylonitrile (PAN): carbon fibers, 639 repeat unit structure, 118, 834 Poly(alkylene glycol), as a quenching agent, 583 Poly(amide-imide) (PAI), repeat unit structure, 835 Polybutadiene, see Butadiene Poly(butylene terephthalate) (PBT), repeat unit structure, 835 Polycarbonate: density, 803 degradation resistance, 696 mechanical properties, 193, 205, 806, 808, 812 melting and glass transition temperatures, 450, 838 plane strain fracture toughness, 300 reinforced vs unreinforced properties, 634 repeat unit structure, 105, 835 trade names, characteristics, and applications, 553 Polychloroprene, see Chloroprene; Chloroprene rubber Polychlorotrifluoroethylene, repeat unit structure, 835 Polycrystalline materials, 80–82, 849 plastic deformation, 253–255 Polydimethylsiloxane, 39–41 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 Index • 875 degradation resistance, 696 repeat unit structure, 554, 835 Polyester(s): degradation resistance (PET), 696 density (PET), 803 fatigue behavior (PET), 320 mechanical properties (PET), 193, 205, 806, 812 melting and glass transition temperatures (PET), 450, 838 in polymer-matrix composites, 641 recycle code and products (PET), 796 repeat unit structure (PET), 105, 836 trade names, characteristics, and applications, 554 Polyetheretherketone (PEEK), 641 degradation resistance, 696 melting and glass transition temperatures, 838 repeat unit structure, 835 Polyetherimide (PEI), 641 Polyethylene, 102, 104 crystal structure of, 118 degradation resistance, 696 density, 803 dielectric constant and dielectric strength, 500 electrical conductivity, 496 fatigue behavior, 320 index of refraction, 767 mechanical properties, 193, 205, 807, 808, 812 melting and glass transition temperatures, 450, 838 recycle codes and products, 796 single crystals, 121 thermal properties, 709, 817, 821, 824 trade names, characteristics, and applications, 553 ultrahigh molecular weight, see Ultrahigh molecular weight polyethylene Poly(ethylene terephthalate) (PET), see Polyester(s) Poly(hexamethylene adipamide), see Nylon 6,6 Polyimides: glass transition temperature, 838 polymer-matrix composites, 641 repeat unit structure, 836 Polyisobutylene: melting and glass transition temperatures, 838 repeat unit structure, 118, 836 Polyisoprene, see Natural rubber (polyisoprene) Polymer-matrix composites, 637–644, 849 Polymerization, 101–102, 603–605 degree of, 107 Polymer light-emitting diodes, 777 Polymers, 8–9, 100, 849 See also Plastics additives, 606–607 classification (molecular characteristics), 115 coefficient of thermal expansion values, 709, 817 conducting, 497–498 costs, 832–833 crosslinking, see Crosslinking crystallinity, 117–123, 841 crystallization, 447–448 crystals, 121–123 defined, 8–9, 100 defects in, 136 deformation (semicrystalline): elastic, 272 plastic, 272–274 degradation of, 695–699 density, 120 density values, 803–804 diffusion in, 179–181 ductility values, 205, 812–813 elastic modulus values, 193, 806–807 elastomers, 278–280, 552–556 electrical properties, 496, 497–498, 500, 826 fibers, 557 fracture mechanics, 309 fracture toughness values, 300, 815 glass transition, 448–449 glass transition temperatures, 449–450, 838 as insulators, 496, 507 ladder, 698 as light-emitting diodes, 777 liquid crystal, 560–561 mechanical properties, 215–217, 228–229 factors that affect, 274–277 values of, 193, 205, 806–807, 808, 812–813 melting of, 448 melting temperatures, 450, 838 miscellaneous applications, 557–559 molecular chemistry, 101–105 molecular configuration, 111–114 molecular shape, 108–109 molecular structure, 109–111 molecular weight, 106–108 natural, 98 opacity and translucency, 775 Poisson’s ratio values, 193, 808 radiation effects, 697 refraction indices, 767 semicrystalline, 119, 121–123, 272–276 specific heat values, 709, 823–824 spherulites in, 97, 121–123, 274, 277 stereoisomerism, 112–113 stress-strain behavior, 215–217 swelling and dissolution, 695 tensile strength values, 205, 812–813 thermal conductivity values, 709, 820–821 thermal properties, 709, 711, 715–716 thermoplastic, see Thermoplastic polymers thermosetting, see Thermosetting polymers types of, 98 viscoelasticity, 218–222 weathering, 699 yield strength values, 205, 812–813 Poly(methyl methacrylate): density, 804 electrical conductivity, 496 fatigue behavior, 320 index of refraction, 767 mechanical properties, 193, 205, 807, 808, 813 melting and glass transition temperatures, 838 plane strain fracture toughness, 300, 815 relaxation modulus, 240 repeat unit structure, 105, 836 stress-strain behavior as function of temperature, 216 trade names, characteristics, and applications, 553 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 876 • Index Polymorphic transformations, in iron, 380–381 Polymorphism, 61, 849 Poly(paraphenylene terephthalamide), see Aramid Poly(phenylene oxide) (PPO), repeat unit structure, 836 Poly(phenylene sulfide) (PPS), 641 melting and glass transition temperatures, 838 repeat unit structure, 836 Polypropylene, 103 degradation resistance, 696 density, 126, 804 fatigue behavior, 320 index of refraction, 767 kinetics of crystallization, 447 mechanical properties, 193, 205, 807, 808, 813 melting and glass transition temperatures, 450, 838 plane strain fracture toughness, 815 recycle code and products, 796 repeat unit structure, 104, 837 thermal properties, 709, 817, 821, 824 trade names, characteristics, and applications, 553 Polystyrene: degradation resistance, 696 density, 804 dielectric properties, 500 electrical conductivity, 496 fatigue behavior, 320 index of refraction, 767 mechanical properties, 193, 205, 807, 808, 813 melting and glass transition temperatures, 450, 838 plane strain fracture toughness, 300, 815 repeat unit structure, 104, 837 thermal properties, 709, 817, 821, 824 trade names, characteristics, and applications, 553 viscoelastic behavior, 219–221 Polytetrafluoroethylene, 103 degradation resistance, 696 density, 804 dielectric constant and dielectric strength, 500 electrical conductivity, 496 fatigue behavior, 320 index of refraction, 767 mechanical properties, 193, 205, 807, 808, 813 melting and glass transition temperatures, 450, 838 repeat unit structure, 104, 837 thermal properties, 709, 817, 821, 824 Poly(vinyl acetate), repeat unit structure, 837 Poly(vinyl alcohol), repeat unit structure, 837 Poly(vinyl chloride): density, 804 mechanical properties, 193, 205, 807, 808, 813 melting and glass transition temperatures, 450, 838 recycle code and products, 796 repeat unit structure, 104, 837 Poly(vinyl fluoride): melting and glass transition temperatures, 838 repeat unit structure, 837 Poly(vinylidene chloride): melting and glass transition temperatures, 838 repeat unit structure, 837 Poly(vinylidene fluoride): glass transition temperature, 838 repeat unit structure, 837 Porcelain, 595 dielectric constant and dielectric strength, 500 electrical conductivity, 496 microstructure, 599 Porosity: ceramics, 213–214 formation during sintering, 600–601, 602 influence on flexural strength, ceramics, 213–214 influence on modulus of elasticity, ceramics, 213 influence on thermal conductivity, 715 optical translucency and opacity, 774 refractory ceramics, 543–545 Portland cement, 546–547 Portland cement concrete, 623 Posttensioned concrete, 624 Potassium niobate, 550 Powder metallurgy, 583, 849 Powder pressing, ceramics, 600–601 Powder x-ray diffraction techniques, 85–87 Precipitation-hardenable stainless steels, 523 Precipitation hardening, 438, 441–446, 849 heat treatments, 441–443 mechanism, 443–446 Prepreg production processes, 648–650, 849 Pressing: ceramics, powdered, 600–601 glass, 591 Prestressed concrete, 624, 849 Primary bonds, 21, 22–30, 849 Primary creep, 326 Primary phase, 366, 849 Principal quantum number, 18, 19 Principle of combined action, 618, 849 Process annealing, 575, 849 Processing, materials, Proeutectoid cementite, 388, 849 Proeutectoid ferrite, 387, 849 Propane, 99 Properties, 849 categories of, Proportional limit, 200, 849 Protons, 16 PTFE, see Polytetrafluoroethylene p-Type semiconductors, 479–480, 849 Pultrusion, 648 Pyrex glass: composition, 541 density, 803 electrical resistivity, 826 index of refraction, 767 joined to low-expansion alloys, 712 mechanical properties, 806, 808, 812 plane strain fracture toughness, 814 thermal properties, 709, 817, 820, 823 thermal shock, 711 Pyroceram: composition, 541 density, 803 electrical resistivity, 826 mechanical properties, 806, 808, 812 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 Index • 877 plane strain fracture toughness, 814 thermal properties, 817, 820, 823 Q Quantum mechanics, 17, 849 Quantum numbers, 18–21, 849 magnetic, 19, 727 Quartz, 54–55, 595, 599 hardness, 229 index of refraction, 767 as piezoelectric material, 509 Quenching media, 581–583 R Radiation effects, polymers, 697 Random copolymers, 116, 849 Range of stress, 315, 316 Recombination, electron-hole, 490, 769, 776 in light-emitting diodes, 776 Recovery, 264, 849 Recrystallization, 264–267, 575, 849 effect on properties, 267 kinetics for copper, 413 Recrystallization temperature, 264–265, 267–268, 849 dependence on alloy content, 265 dependence on percent cold work, 264–265 selected metals and alloys, 268 Rectification, 490–491 Rectifying junctions, 490, 849 Recycling: issues in materials science and engineering, 794–797 of beverage cans, 789 of composite materials, 797 of glass, 795 of metals, 795 of plastics and rubber, 795–797 Recycling codes and products, 796 Reduction (electrochemical), 662, 849 Reduction in area, percent, 204 Reflection, 767, 849 Reflectivity, 763, 771 Refraction, 759, 765–766, 849 index of, 765, 845 Refractories (ceramics), 540, 543–545, 849 corrosion, 694 Refractory metals, 536, 538 Reinforced concrete, 623–624, 849 Reinforcement efficiency, table of, 635 Relative permeability, 725, 726, 849 Relative permittivity, see Dielectric constant Relaxation frequency, 506, 849 Relaxation modulus, 218–221, 850 Remanence (remanent induction), 738, 850 Repeated stress cycle, 315–316 Repeat units, bifunctional and trifunctional, 105 table of, 104–105 Residual stresses, 575, 850 See also Thermal stresses glass, 593 martensitic steels, 434 Resilience, 204, 850 Resin, polymer, 637 Resistance (electrical), 461 Resistivity, 850 See also Electrical resistivity Resolved shear stresses, 250, 850 Retained austenite, 422, 423 Reverse bias, 490, 850 Reversed stress cycle, 315–316 Rhodium, 538 Rhombohedral crystal system, 61, 62 Rochelle salt, 507 Rock salt structure, 49, 51 Rockwell hardness tests, 186, 223–225 Rolling, of metals, 570–571, 850 Rouge, 546 Rovings, 648 Rubbers, 109, 117 natural, see Natural rubber (polyisoprene) synthetic, 116, 552, 554, 555–556 trade names, characteristics, and applications, 556 Rubbery region, polymers, 220 Ruby, see also Aluminum oxide lasers, 778–779 optical characteristics, 773 Rule of mixtures, 850 composites, 620–621, 629, 631, 632, 633, 634, 643 electrical resistivity, 470 Rupture, 326, 850 Rupture lifetime, 327 extrapolation of, 329–330 Rust, 663 Ruthenium, 538 S Sacrificial anodes, 690, 850 Safe stress, 232, 850 Safety factors, 232, 302 Samarium-cobalt magnets, 746 Samarium-iron garnet, 756 Sand casting, 572 Sandwich panels, 619, 651–652, 850 Sapphire, see also Aluminum oxide optical transmittance, 773 Saturated hydrocarbons, 99, 850 Saturation, extrinsic semiconductors, 482 Saturation magnetization, 730, 734, 737–738, 850 temperature dependence, 736 SBR, see Styrene-butadiene rubber Scaling, 691 Scanning electron microscopy, 153, 850 Scanning probe microscopy, 12, 127, 153–154, 850 Scanning tunneling microscope, 60 Schottky defect, 130–131, 177, 850 equilibrium number, 132–133 Scission, 697, 850 Scleroscope hardness, 226 Screw dislocations, 141, 143, 244, 245, 850 See also Dislocations in polymers, 137 Seawater, as corrosion environment, 688 Secant modulus, 193–194 Secondary bonds, 31–32, 850 Secondary creep, 326–327 Segregation, 355 Selective leaching, 685, 850 Self-diffusion, 163, 850 Self-interstitials, 129, 850 SEM, see Scanning electron microscopy Semiconductor devices, 489–496 Semiconductor lasers, 780–781 Semiconductors: band structure, 465, 466–467 carbon nanotubes as, 60 in computers, 494 costs, 831, 832 defined, 11, 463, 850 extrinsic, 477–481, 843 fullerenes as, 59 intrinsic, 474–477, 845 intrinsic carrier concentration, 475, 481 light absorption, 768–770 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 18, 2007 878 • Index Semiconductors (continued) n-type, 477–479, 847 p-type, 479–480, 849 temperature dependence: electron concentration, n-type Si, 482 electron mobility, Si, 484 hole mobility, Si, 484 intrinsic carrier concentration of Ge, 481 intrinsic carrier concentration of Si, 481 Semicrystalline polymers, 119 deformation mechanisms: elastic, 272–273 plastic, 274, 275 Sensors, 12, 547 Severity of quench, 581 Shape memory: alloys, 12 phase transformations, 439–441 Shear deformation, 189, 211 Shear modulus, 195 relationship to elastic modulus, 197 selected metals, 193 Shear strain, 191, 850 Shear stress, 191, 850 resolved, 250 resolved from tensile stress, 191–192 Shear tests, 191 Sheet glass forming (float process), 592–593 Shot peening, 324 Shrinkage, clay products, 597–598 Shrink-wrap polymer films, 278 Silica, 54 crystalline and noncrystalline structures, 88 fibers for optical communications, 549, 784–785 fused, see Fused silica as refractory, 544 Silica-alumina phase diagram, 377 Silica glasses, 89 viscosity, 591 Silicates: glasses, 89 layered, 55–56 tetrahedral structure, 54 types and structures, 54–57, 89 Silicon: bonding energy and melting temperature, 28 conduction in, 476 cost, 832 electrical characteristics, 474 electron concentration vs temperature, n-type, 482 electron/hole mobility vs impurity concentration, 483 electron/hole mobility vs temperature, 484 fracture toughness, 548 intrinsic carrier concentration vs temperature, 481 in MEMS, 548 vacancy (surface), 127 Silicon carbide: as abrasive, 545 flexural strength, 205, 812 hardness, 229 modulus of elasticity, 193, 806 properties as whiskers and fibers, 636 as refractory, 545 Silicon dioxide, see Silica Silicone rubber, 554–556 characteristics and applications, 556 degradation resistance, 696 Silicon nitride: ceramic ball bearings, 549 compressive strength, 549 flexural strength, 205, 812 fracture strength distribution, 305 hardness, 549 modulus of elasticity, 193, 806 properties as a whisker, 636 Silly putty, 218 Silver, 538 atomic radius and crystal structure, 40 electrical conductivity, 469, 471 slip systems, 249 thermal properties, 709 Simple cubic crystal structure, 92 Single crystals, 80, 850 slip in, 250–253 Sintered aluminum powder (SAP), 624 Sintering, 601, 850 SI units, 799–800 Ski, cross-section, 617 Slip, 199, 245, 850 compared to twinning, 256 polycrystalline metals, 253–255 single crystals, 250–253 Slip casting, 596–597, 850 Slip direction, 248 Slip lines, 251, 254 Slip plane, 244, 245, 248 Slip systems, 248–249, 850 selected metals, 249 Small-angle grain boundaries, 145, 258 Smart materials, 11–12 Societal considerations, materials science, 792–797 Soda-lime glasses: composition, 541 dielectric properties, 500 electrical conductivity, 496 thermal properties, 709 thermal shock, 718 viscosity, 591 Sodium chloride: bonding energy and melting temperature, 28 ionic bonding, 27 structure, 49, 80 Sodium-silicate glass, 89 Softening point (glass), 590, 851 Soft magnetic materials, 741–744, 851 properties, 744 Soils, as corrosion environments, 689 Soldering, 362, 573, 851 Solders, lead-free, 362 Solid-solution strengthening, 259–260, 355, 851 Solid solutions, 134–135, 851 in ceramics, 135 intermediate, 369, 372, 845 interstitial, 134–135, 845 in metals, 134–135 ordered, 369, 531 terminal, 369, 852 Solidus line, 346, 356, 851 Solubility limit, 341, 851 factors that influence for solid phases, 134 Solutes, 851 defined, 133 Solution heat treatment, 442, 851 Solvents, 851 defined, 133 Solvus line, 356, 851 Sonar, use of piezoelectric ceramics in, 550 Specific heat, 706, 851 values for selected materials, 709, 822–824 2nd Revise Page 20:15 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 Index • 879 Specific modulus, 625, 851 selected fiber-reinforcement materials, 636 Specific strength, 533, 625, 851 selected fiber-reinforcement materials, 636 Sphalerite structure, 50, 51 Spheroidite, 419–421, 851 hardness and ductility, 432 Spheroidization, 577, 851 Spherulites, in polymers, 97, 121–122, 851 alteration during deformation, 272–275 photomicrograph of polyethylene, 123 transmission electron micrograph, 97 Spinel, 51, 79, 374 flexural strength, 205 index of refraction, 767 modulus of elasticity, 193 structure, 79 thermal properties, 709 Spin magnetic moment, 19, 727 Spinnerets, 610 Spinning, polymer fibers, 610–611, 851 Stabilized zirconia, 377, 645 Stabilizers, 606–607, 851 Stacking faults, 147 Stainless steels, 521–523, 851 See also Ferrous alloys; specific steels compositions, properties, and applications for selected, 523 creep resistance, 331 electrical conductivity, 469 passivity, 678 thermal properties, 709 weld decay, 685 Standard deviation, 230–231 Standard emf series, 665–667 Standard half-cells, 665, 851 Static fatigue, 304 Steady-state creep rate, 327 Steady-state diffusion, 851 Steatite, dielectric properties, 500 Steels, 383 See also Alloy steels; Stainless steels AISI/SAE designation scheme, 520 classification, 423, 518 costs, 829–830 elastic and shear moduli, 193 electrical conductivity, 469 fatigue behavior (1045), 336 heat treatments, 576–588 impact energy, 314 magnetic properties, 746 overview of types, 517–523 plane strain fracture toughness, 300, 814 Poisson’s ratio, 193 properties as wires (fiber reinforcement), 636 thermal properties, 709 yield and tensile strengths, ductility (1020), 205 Step reaction polymerization, see Condensation polymerization Stereoisomerism, 851 polymers, 112–113 Sterling silver, 133, 538 Stiffness, see Modulus of elasticity Stoichiometry, 131, 851 Stone age, Strain, 190 See also Stress-strain behavior engineering, 190, 851 lattice, 246–247, 260, 446, 846 shear, 191, 850 true, 208, 853 Strain hardening, 210, 260–263, 570, 851 corrosion and, 680 influence on electrical resistivity, 470, 471 influence on mechanical properties, 261, 262 recrystallization after, 264–267 Strain-hardening exponent, 208, 262 determination of, 239 selected metal alloys, 209 Strain point (glass), 590, 851 Strength, 200 flexural, 211–212, 844 fracture, 201 ranges for material types (bar chart), Strengthening of metals: grain size reduction, 257–258 mechanism, 257 solid-solution strengthening, 259–260 strain hardening, see Strain hardening Stress, see also Stress-strain behavior critical (for fracture), 297 effect on creep, 328–329 engineering, 189, 851 mean (fatigue), 315, 316, 323 normal (resolved from pure tensile), 191–192 range (fatigue), 315, 316 residual, see Residual stresses safe, 232, 850 shear, 191, 192, 250, 850 shear (resolved from pure tensile), 191–192 thermal, see Thermal stresses true, 207, 853 working, 232 Stress amplitude, 315, 316 Stress concentration, 293–297, 310, 323, 851 polymers, 308 Stress concentration factor, 296 Stress corrosion cracking, 660, 686–687, 851 in ceramics, 304 Stress raisers, 295, 323, 851 in ceramics, 213, 304 Stress ratio, 316 Stress relaxation measurements, 219 Stress relief annealing, 575, 851 Stress state, geometric considerations, 191–192 Stress-strain behavior: alloy steel, 236 brass, 202 ceramics, 213 composite, fibrous (longitudinal), 628 elastic deformation, 192–194 natural rubber, vulcanized and unvulcanized, 280 nonlinear (elastic), 194 plastic deformation, 200–203 polymers, 215–217 shape-memory alloys, 441 for steel, variation with percent cold work, 262 true, 208 Striations (fatigue), 320–322 Structural clay products, 543, 851 Structural composites, 650–652, 851 Structure, atomic, 16–23 definition, 852 Structures, crystal, see Crystal structures 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 880 • Index Styrene, 118 Styrene-butadiene rubber (SBR), 117 characteristics and applications, 553 degradation resistance, 696 Styrenic block copolymers, 558, 562–563 Styrofoam, 716 Substitutional impurity defects, 134 Substitutional solid solutions, 134, 852 Superalloys, 538 creep resistance, 331 fiber reinforcement, 644 Superconductivity, 750–753, 852 applications, 753 Superconductors, 750 critical properties, 752 high-temperature, 753 types I and II, 751–752 Supercooling, 407, 414, 852 degrees for homogeneous nucleation, 407 Superficial Rockwell hardness tests, 223, 224 Superheating, 414, 852 Super Invar, 709, 712 as low-expansion alloy, 712 Supermalloy, magnetic properties, 744 Surface energy, 144, 403 Susceptibility, magnetic, 726 Symbols, list, xxiii-xxv Syndiotactic configuration, 113, 852 Synthetic rubbers, 116–117, 556, 696 Systems: definition, 340, 852 homogeneous vs heterogeneous, 342 T Talc, 57 Tangent modulus, 193–194 Tantalum, 536, 538 Tape casting, 602–603 Tarnishing, 691 Tear strength, polymers, 228 Teflon, see Polytetrafluoroethylene TEM, see Transmission electron microscopy Temperature gradient, 711 thermal stresses, 717 Temper designation, 533, 852 Tempered martensite, 434–437, 852 hardness vs carbon content, 433 mechanical properties vs tempering temperature, 436 dependence on cylinder diameter, 586–587 Temper embrittlement, 437 Tempering: glass, 305, 593–594, 615 steels, 434–437 Tennis balls (nanocomposites in), 653–654 Tensile strength, 200–201, 852 carbon nanotubes, 60 correlation with hardness, 227 fibrous composites, 632–633 fine pearlite, 431 influence of recrystallization on, 267 ranges for material types (bar chart), selected fiber-reinforcement materials, 636 tempered martensite, 436 values for various materials, 205, 804–807 Tensile test apparatus, 188–190 Tensile tests, 188–190 See also Stress-strain behavior Terephthalic acid (structure), 605 Terminal solid solutions, 369, 852 Ternary phase diagrams, 378 Tertiary creep, 326, 327 Tetragonal crystal system, 61, 62 Tetrahedral position, 79, 732, 852 Textile fibers, 557 Texture: magnetic, 82, 743 rolling (sheet, BCC iron), 743 Thermal conduction, 707, 713 Thermal conductivity, 711, 712–716 influence of impurities, 714 selected materials, 709, 819–821 Thermal diffusivity, 720 Thermal expansion, 708–711, 713 linear coefficient of, 325, 708, 716–718, 852 selected materials, 709, 815–818 volume coefficient of, 709 Thermal fatigue, 325, 852 Thermally activated processes, 411, 852 Thermal properties, 706 See also specific thermal properties selected materials, 709, 815–824 Thermal shock, 593, 711, 852 brittle materials, 717–718 maximum temperature change without, 721 Thermal shock resistance, 717–718 Thermal stresses, 325, 716–718, 852 avoidance at metal-to-glass junctions, 712 glass, 593 Thermal tempering (glass), 593–594, 852 Thermoplastic elastomers, 561–563, 852 Thermoplastic polymers, 115, 852 characteristics and applications, 553–554 degradation resistance, 696 forming techniques, 607–610 Thermosetting polymers, 115, 852 characteristics and applications, 554 degradation resistance, 696 forming techniques, 607–610 Thin film magnetic recording media, 748–750 Thoria-dispersed (TD) nickel, 624 Tie lines, 347, 852 Tilt boundaries, 145, 146 Time-temperature-transformation diagrams, see Isothermal transformation diagrams Tin, 538, 540 allotropic transformation for, 63 crystal structures, 58, 63 density, 803 electrical resistivity, 825 mechanical properties, 806, 808, 811 recrystallization temperature, 268 superconducting critical temperature, 752 thermal properties, 816, 820, 823 Tin cans, 691 Tin-gold phase diagram, 397 Titanium: atomic radius and crystal structure, 40 density, 802 elastic and shear moduli, 193 electrical resistivity, 825 Poisson’s ratio, 193, 808 slip systems, 249 superconducting critical temperature, 752 thermal properties, 816, 819, 822 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 17, 2007 Index • 881 yield and tensile strengths, ductility, 205, 811 Titanium alloys, 535–536, 537 compositions, 828 densities, 802 electrical resistivities, 825 mechanical properties, 805, 808, 811 plane strain fracture toughness, 300, 814 properties and applications of, 537 thermal properties, 816, 819, 822 Tool steels, 521, 522 Top-down science, 12 Torque, 189 Torsion, 191 Torsional deformation, 189, 211 Torsional tests, 191 Toughness, 206–207, 852 Tows, 648 Trade names: selected elastomers, 556 selected plastics, 553–554 Trans, 114, 852 Transducers, 508, 550 Transfer molding, plastics, 608 Transformation rate, 411–413, 852 temperature dependence, 411 Transformation toughening, 645–646 Transformer cores, 743 Transgranular fracture, 293, 295, 852 Transient creep, 326 Transistors, 491–494 Transition metals, 24 Transition temperature, ductile-brittle, see Ductile-to-brittle transition Translucency, 763, 852 insulators, 774–775 Transmission (of light), 771–772 Transmission electron microscopy, 144, 152–153, 852 Transmissivity, 763 Transparency, 763, 853 Transverse bending test, 211–212 equation for maximum deflection, 239, 642 Transverse direction, 627, 853 Transverse loading, composites, 631–632 Triclinic crystal system, 61, 62 anisotropy in, 82 Tridymite, 54 Trifunctional (polymers), 105, 853 Trigonal crystal system, see Rhombohedral crystal system Triple point, 345 True stress/strain, 207–209, 853 T-T-T diagrams, see Isothermal transformation diagrams Tungsten, 536 atomic radius and crystal structure, 40 bonding energy and melting temperature, 28 density, 802 diffraction pattern, 96 elastic and shear moduli, 193 electrical resistivity, 825 Poisson’s ratio, 193, 808 properties as wire, 636 recrystallization temperature, 268 slip systems, 249 superconducting critical temperature, 752 thermal properties, 709, 816, 820, 823 yield and tensile strengths, ductility, 811 Tungsten carbide: as abrasive, 545 hardness, 229 Turbine blades, 331 Twin boundaries, 146–147 Twinning, 255–256 compared to slip, 256 role in shape-memory effect, 439–441 Twins, 146 U Undercooling, see Supercooling UHMWPE (Ultrahigh molecular weight polyethylene), 559–560, 853 properties as a fiber, 636 Unary phase diagrams, 343–345 Uniaxial powder pressing, 600 Unidirectional solidification, 331 Uniform corrosion, 680 Unit cells, 39–40, 853 See also Crystal structures crystal systems, 61, 62 Units: electrical and dielectric parameters, 503 magnetic parameters, 726 SI, 799–800 Unsaturated hydrocarbons, 99, 853 UNS designation scheme, 521 Upper critical temperature, 576, 853 Upper yield point, 199, 200 V Vacancies, 128–129, 853 in ceramics, 130 diffusion, 164, 177, 853 equilibrium number, 128 in polymers, 136 Valence band, 465, 853 Valence electrons, 21, 853 van der Waals bonding, 31–32, 34, 853 in clays, 57 gecko lizards, 15 hydrocarbons, 99 in polymers, 110, 274 Vibrational heat capacity, 706–707 Vibrations, atomic, 147, 149, 706–707 Vickers hardness tests, 224, 226 Video cassette recorders, 748 Vinyl esters, polymer-matrix composites, 641 Vinyls, 554 Viscoelastic creep, 221–222 Viscoelasticity, 196, 218–222, 853 Viscoelastic relaxation modulus, 218–222, 850 Viscosity, 271–272, 615, 853 temperature dependence for glasses, 591 Viscous flow: in ceramics, 271–272 in polymers, 221 Visible spectrum, 761 Vision (glass ceramic), 542 Vitreous silica, see Fused silica Vitrification, 598, 853 Volatile organic compound (VOC) emissions, 557 Volume defects, 147 Volume expansion coefficient, 709 Volume fraction (phase), 351 Vulcanization, 110, 279–280, 853 Vycor, 542 1:38 P1: PSB Printer: tb-gts4c GTBL042-Index GTBL042-Callister-v3 October 18, 2007 882 • Index W Wallner line, 308 Water: as corrosion environment, 688 bonding energy and melting temperature, 28 desalination of, 180 hydrogen bonding in, 32, 33 phase diagram (pressure-temperature), 344, 398 as quenching medium, 581–582 volume expansion upon freezing, 33 Wave-mechanical atomic model, 18, 853 Weathering, of polymers, 699 Weight-average molecular weight, 106–107 Weight percent, 136–139, 853 Weld decay, 685, 853 Welding, 573–574, 853 Wetting, 409 Whiskers, 298, 636, 853 White cast iron, 526, 528, 529, 853 Whitewares, 540, 543, 594–595, 853 Wiedemann-Franz constant, 713 values of, for metals, 709 Wiedemann-Franz law, 713 Wires, 636 Wood: as composite, 618 cost, 833 density, 804 electrical resistivity, 827 modulus of elasticity, 807 specific heat, 824 tensile strength, 813 thermal conductivity, 821 thermal expansion coefficient, 818 Work hardening, see Strain hardening Working point (glass), 590–591, 853 Working range (glass), 590–591 Working stress, 232 Wrought alloys, 530, 853 Wustite, ă 131, 514 X X-ray diffraction, 37, 83–87 X-rays, 760, 761 Y Yielding, 200, 853 Yield point phenomenon, 200, 201 Yield strength, 200, 202, 215–216, 853 dependence on grain size (brass), 258 fine pearlite, 431 precipitation hardened aluminum alloy, 445 tempered martensite, 436 values for various materials, 205, 300, 809–813 Young’s modulus, see Modulus of elasticity Yttrium barium copper oxide, 752, 753 Yttrium iron garnet (YIG), 733 Z Zinc: atomic radius and crystal structure, 40 density, 803 electrical resistivity, 826 mechanical properties, 806, 808, 811 recrystallization temperature, 268 slip systems, 249 thermal properties, 816, 820, 823 Zinc alloys, 540 Zinc blende structure, 50, 51 Zinc telluride, electrical characteristics, 474 Zirconia, 545 density, 803 electrical resistivity, 826 flexural strength, 205, 812 modulus of elasticity, 193, 806 plane strain fracture toughness, 815 Poisson’s ratio, 808 as refractory, 545 stabilized, 377 transformation toughening, 645 Zirconia-calcia phase diagram, 376 Zirconium: alloys, 540 density, 803 electrical resistivity, 826 mechanical properties, 806, 808, 811 slip systems, 249 thermal properties, 816, 820, 823 2nd Revise Page 20:15 P1: PSB GTBL042-Index Printer: tb-gts4c GTBL042-Callister-v3 October 18, 2007 2nd Revise Page 20:15 ... 232.04 231.04 238.03 (2 3 7) (2 4 4) (2 4 3) (2 4 7) (2 4 7) (2 5 1) (2 5 2) (2 5 7) (2 5 8) (2 5 9) (2 6 2) Figure 2.6 Periodic table of the elements The numbers in parentheses are the atomic weights of the most stable... 192.2 109 195.08 110 196.97 200.59 204.38 207.19 208.98 (2 0 9) (2 1 0) (2 2 2) Rf Db Sg Bh Hs Mt Ds (2 6 1) (2 6 2) (2 6 6) (2 6 4) (2 7 7) (2 6 8) (2 8 1) 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr... 1.2 Materials Science and Engineering • 1.2 MATERIALS SCIENCE AND ENGINEERING Sometimes it is useful to subdivide the discipline of materials science and engineering into materials science and materials