GIẢI TÍCH 12 – CHƯƠNG I TÀI LIỆU ÔN THI THPT QUỐC GIA MÔN TOÁN PHƯƠNG PHÁP GIẢI TÍCH 12 – CHƯƠNG I CHỦ ĐỀ 4 3 Tìm tham số để đồ thị hàm số có n tiệm cận MỨC ĐỘ 2 Câu 1 [2D1 4 3 2] [THPT chuyên Nguyễn[.]
TÀI LIỆU ƠN THI THPT QUỐC GIA MƠN TỐN PHƯƠNG PHÁP GIẢI TÍCH 12 – CHƯƠNG I CHỦ ĐỀ 4.3 Tìm tham số để đồ thị hàm số có n tiệm cận MỨC ĐỘ Câu [2D1-4.3-2] [THPT chuyên Nguyễn trãi lần 2] Tìm tất giá trị thực tham số m để đồ thị hàm số y x x2 m có tiệm cận m B m A m 0 m 0 C m 9 Hướng dẫn giải D m Chọn A 3 1 x x x 1 lim lim Ta có: xlim xlim 2 x x m m x m x m 1 1 x x Do đó, đồ thị hàm số ln có tiệm cận ngang y ; y 1 Để đồ thị hàm số có tiệm cận cần có thêm tiệm cận đứng Trường hợp 1: x m 0 có nghiệm kép khác , nên m 0 Trường hợp 2: x m 0 có nghiệm mà nghiệm bị triệt tiêu lượng x 0 tử Cụ thể ta có m x x x nên đồ thị hàm số có lim 0 lim Thật vậy, ta có: lim x 3 x x2 x x x tiệm cận đứng x x 1 Vậy đáp số m 0; 9 Câu [2D1-4.3-2] [THPT chuyên Lê Thánh Tông] Số giá trị m để đồ thị hàm số xm khơng có tiệm cận đứng mx A B y C Hướng dẫn giải D Chọn D TH1: m 0 y x : Đồ thị hàm số khơng có tiệm cận đứng 1 TH2: x nghiệm tử số m 0 m 1 m m Câu [2D1-4.3-2] [TT Hiếu Học Minh Châu] Tìm tất giá trị tham số a để đồ thị hàm số x2 a có đường tiệm cận y x ax A a B a 0, a 1 C a 0, a D a 0, a Hướng dẫn giải Chọn D Hàm số có tập xác định D \ 0, a x2 a 0 nên y 0 tiệm cận ngang x x ax Ta có lim y lim x TRANG TÀI LIỆU ÔN THI THPT QUỐC GIA MƠN TỐN Để hàm số y Câu PHƯƠNG PHÁP x2 a có hai tiệm cận đứng a 0 a a 0 x ax [2D1-4.3-2] [THPT Gia Lộc 2] Cho hàm số 2m 1 x y 3 x4 1 a 0 a , (m tham số thực) Tìm m để tiệm cận ngang đồ thị hàm số qua điểm A 1; 3 A m B m 2 C m 0 Hướng dẫn giải D m 1 Chọn A Ta có lim y lim x x lim y lim (2m 1) x x4 1 (2m 1) x 2m 2m x4 1 Nên đường thẳng y 2m tiệm cận ngang đồ thị hàm số cho Đường thẳng y 2m qua điểm A(1; 3) nên 2m m x Câu x [2D1-4.3-2] [Cụm HCM] Với giá trị m đồ thị hàm số y mx có tiệm cận 2x m đứng đường thẳng x ? A m 2 B m C m Hướng dẫn giải D m 0 Chọn A m Tập xác định D \ 2 Đồ thị hàm số cho có tiệm cận đứng x Câu m m suy m 2 2 x2 x m [2D1-4.3-2] [SỞ GD ĐT HƯNG YÊN] Tìm đề đồ thị hàm số y có tiệm x 2x m cận đứng A m m B m m C m 1 m D m Hướng dẫn giải Chọn A Yêu cầu toán x x m 0 có nghiệm phân biệt khác nghiệm x x 0 1 m m 1 m 0 m 4 m 0 Câu [2D1-4.3-2] [THPT Thuận Thành] Tìm m để đồ thị H : y m 1 x 2m khơng có x tiệm cận đứng TRANG TÀI LIỆU ÔN THI THPT QUỐC GIA MÔN TOÁN A m 1 PHƯƠNG PHÁP B m C m 2 D m Hướng dẫn giải Chọn C Để hàm số khơng có tiệm cận đứng Þ m- =0 Þ m = Câu [2D1-4.3-2] [THPT Thuận Thành 3] Tìm tất giá trị thực tham số m cho đồ thị hàm số y m 1 x 1 x2 x 1 có đường tiệm cận ngang A m C m 0 B m 1 D Khơng có giá trị m thỏa mãn Hướng dẫn giải Chọn B m 0 m 1 Ta có y 0 tiệm cận ngang đồ thị hàm số cho m 1 m y (m 1) tiệm cận ngang đồ thị hàm số Câu [2D1-4.3-2] [THPT Thuận Thành 2] Cho hàm số y x2 Tìm m để đồ thị hàm số x 4x m có tiệm cận đứng tiệm cận ngang? A m 12 B m 4; 12 C m D m 4; 12 Hướng dẫn giải Chọn D x2 Đồ thị hàm số có tiệm cận x 4x x2 x2 Khi m 12 y x x 12 Đồ thị hàm số có tiệm cận x 2 Khi m y Câu 10 [2D1-4.3-2] [THPT chuyên Vĩnh Phúc lần 5] Tìm tất giá trị m để đồ thị hàm số (m - 1) x + 2m + khơng có tiệm cận đứng x- A m ¹ - B m = C m ¹ Hướng dẫn giải Chọn D (m - 1) x + 2m + Đồ thị hàm số y = khơng có tiệm cận đứng x- y= D m =- Û 2m + =- ( m - 1) Û m =- Câu 11 [2D1-4.3-2] [Sở GDĐT Lâm Đồng lần 03] Để đường cong (C ) : y x 3x có x ax a đường tiệm cận đứng giá trị a TRANG TÀI LIỆU ÔN THI THPT QUỐC GIA MƠN TỐN a 0 PHƯƠNG PHÁP a 1 A a 4 C a 1 B a 2 D a 2 Hướng dẫn giải Chọn A Yêu cầu toán x ax a 0 có nghiệm kép a 4a 0 a 0 a 4 Hoặc thử a= a=4 ta thấy có tiệm cận đứng Câu 12 [2D1-4.3-2] [THPT Nguyễn Khuyến –NĐ] Tìm tất giá trị tham số m để đồ thị hàm x2 x có hai tiệm cận đứng x2 x m m A m B m 8 số y m C m Hướng dẫn giải m 1 D m Chọn C Đồ thị hàm số y x2 x có hai tiệm cận đứng phương trình x2 x m f x x x m có hai nghiệm phân biệt khác f 1 0 f 0 1 m m m 1 m m Câu 13 [2D1-4.3-2] [THPT Thanh Thủy] Với điều kiện tham số m đây, đồ thị x có tiệm cận đứng x 3x m2 A Khơng có m B m C m D m 1; Hướng dẫn giải Chọn C Đồ thị hàm số có tiệm cận đứng phương trình x x m 0 có nghiệm kép hay có nghiệm TH : 4m 0 m 2 TH : 3.2 m 0 m Cm : y Câu 14 [2D1-4.3-2] [THPT TH Cao Nguyên] Để đồ thị hàm số y x 1 m x 3x có tiệm cận ngang điều kiện m A m B m C m Hướng dẫn giải D m 1 Chọn C y y0 lim y y0 m m Đồ thị hàm số có tiệm cận ngang xlim x TRANG TÀI LIỆU ÔN THI THPT QUỐC GIA MƠN TỐN PHƯƠNG PHÁP Câu 15 [2D1-4.3-2] [THPT TH Cao Nguyên] Cho hàm số y x2 x có đồ thị C Tích x khoảng cách từ điểm đồ thị C đến đường tiệm cận A B Hướng dẫn giải C D Chọn D Ta thấy x 0 x 2 22 4.2 0 nên đồ thị hàm số có đường tiệm cận đứng x 2 d1 nên y x d tiệm cận xiên đồ thị hàm số C x 2 3 I 0; C Lấy Ta có d I d d I ; d 2 7 22 Ta có y x Câu 16 [2D1-4.3-2] [Sở Bình Phước] Biết đồ thị hàm số y a 2b x bx có tiệm cận đứng x2 x b đường thẳng x 1 tiệm cận ngang đường thẳng y 0 Tính a 2b A B C 10 D Hướng dẫn giải Chọn A Theo giả thiết ta có lim y 0 a 2b 0 lim y b 2, a 4 Vậy a 2b 8 x x Câu 17 [2D1-4.3-2] [Cụm HCM] Với giá trị m đồ thị hàm số y mx có tiệm cận 2x m đứng đường thẳng x ? A m 2 B m C m Hướng dẫn giải D m 0 Chọn A m Tập xác định D \ 2 Đồ thị hàm số cho có tiệm cận đứng x m m suy m 2 2 Câu 18 [2D1-4.3-2] [THPT chuyên Vĩnh Phúc lần 5] Tìm tất giá trị m để đồ thị hàm số (m - 1) x + 2m + khơng có tiệm cận đứng x- A m ¹ - B m = C m ¹ Hướng dẫn giải Chọn D (m - 1) x + 2m + Đồ thị hàm số y = khơng có tiệm cận đứng x- y= D m =- Û 2m + =- ( m - 1) Û m =- TRANG TÀI LIỆU ƠN THI THPT QUỐC GIA MƠN TỐN PHƯƠNG PHÁP ax qua điểm M 1; x b có đường tiệm cận đứng đường thẳng x Giá trị hàm số x 0 ? 1 A B C D 2 Hướng dẫn giải Chọn A a a 2b 3 Đồ thị hàm số qua điểm M 1; 1 b Có đường tiệm cận đứng là: x nên b 2 a 7 7x 1 y Hàm số cho y x2 Câu 19 [2D1-4.3-2] [THPT Lệ Thủy-Quảng Bình] Đồ thị hàm số y Câu 20 [2D1-4.3-2] [THPT Chuyên Phan Bội Châu] Tìm giá trị tham số m để tiệm cận đứng đồ thị hàm số y A m 6 x 3 qua điểm A 5;2 xm B m 4 C m Hướng dẫn giải D m Chọn C Để đường thẳng x 1 m tiệm cận đứng đồ thị hàm số x 1 m khơng phải nghiệm phương trình x 0 m 0 m 4 Đường thẳng x 1 m qua điểm A 5;2 1 m m mx x m Câu 21 [2D1-4.3-2] [THPT Chuyên SPHN] Tìm tập tất giá trị để hàm số y x2 có đường tiệm cận đứng là: A \ 2 B \ 0 C 2 D Hướng dẫn giải Chọn A Để x đường tiệm cận đứng m.( 2) 6( 2) 0 m Câu 22 [2D1-4.3-2] [Sở GD ĐT Long An] Tìm tất giá trị tham số m để đồ thị hàm số mx có tiệm cận đứng x A m 2 B m y C m Hướng dẫn giải D m Chọn B Hàm số có tiệm cận đứng lim x mx m.1 0 m x TRANG TÀI LIỆU ÔN THI THPT QUỐC GIA MÔN TOÁN PHƯƠNG PHÁP Câu 23 [2D1-4.3-2] [THPT Gia Lộc 2] Cho hàm số 2m 1 x y x 1 3 , (m tham số thực) Tìm m để tiệm cận ngang đồ thị hàm số qua điểm A 1; 3 A m B m 2 C m 0 Hướng dẫn giải D m 1 Chọn A Ta có lim y lim x x lim y lim (2m 1) x x4 1 (2m 1) x 2m 2m x4 1 Nên đường thẳng y 2m tiệm cận ngang đồ thị hàm số cho Đường thẳng y 2m qua điểm A(1; 3) nên 2m m x x TRANG