Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 144 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
144
Dung lượng
6,29 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - CHẾ TẠO, NGHIÊN CỨU CÁC TÍNH CHẤT TỪ VÀ KHẢ NĂNG SINH NHIỆT CỦA MỘT SỐ HỆ NANO NỀN Fe3O4 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội – 2023 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - CHẾ TẠO, NGHIÊN CỨU CÁC TÍNH CHẤT TỪ VÀ KHẢ NĂNG SINH NHIỆT CỦA MỘT SỐ HỆ HẠT NANO NỀN Fe3O4 Chuyên ngành: Vật liệu điện tử Mã số: 9.44.01.23 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: Hà Nội – 2023 i LỜI CẢM ƠN Lời đầu tiên, tơi xin bày tỏ lịng biết ơn sâu sắc tới PGS.TS , người Thầy dành cho định hướng khoa học hiệu quả, động viên, giúp đỡ tận tình suốt trình thực luận án Tơi xin bày tỏ lịng kính trọng gửi lời cảm ơn sâu sắc cho bảo, định hướng khích lệ GS TSKH từ năm bắt đầu thực luận án Tôi xin gửi lời cảm ơn chân thành tới TS giúp đỡ nhiệt tình bàn luận quý báu giai đoạn hoàn thiện luận án Cảm ơn cộng tác giúp đỡ TS nghiên cứu thực nghiệm phân tích kết Tơi xin gửi lời cảm ơn chân thành đến PGS.TS Những lời động viên, khích lệ giúp đỡ nhiệt tình anh chị em suốt thời gian thực luận án giúp tơi có thêm nhiều động lực, vượt qua giai đoạn khó khăn để hồn tất chương trình học nghiên cứu sinh Tơi xin gửi lời cảm ơn tới đồng nghiệp thuộc Phòng Vật lý vật liệu từ siêu dẫn Phòng Hiển vi điện tử - Viện Khoa học vật liệu giúp đỡ nhiệt tình tạo điều kiện suốt thời gian thực luận án Tôi xin gửi lời cảm ơn tới GS công tác Đại học Luân Đôn (UCL) – Vương quốc Anh hỗ trợ giúp đỡ thời gian thực tập trao đổi nghiên cứu Phịng thí nghiệm vật liệu nano từ tính sinh học chăm sóc sức khỏe thuộc UCL Tôi xin gửi lời cảm ơn tới nhóm nghiên cứu TSKH thuộc Viện Vật lý thực nghiệm – Viện Hàn lâm Khoa học Slovakia, nhóm nghiên cứu GS – Viện Nhiệt độ thấp Nghiên cứu cấu trúc – Viện Hàn lâm khoa học Ba Lan phép đo từ nhiệt độ thấp, từ trường cao Mossbauer bàn luận khoa học sâu sắc trình hợp tác nghiên cứu ii Tôi xin trân trọng cảm ơn giúp đỡ tạo điều kiện thuận lợi sở đào tạo Học viện Khoa học Công nghệ, đặc biệt Viện Khoa học vật liệu, quan mà tơi cơng tác, q trình thực luận án Luận án hỗ trợ kinh phí dự án hợp tác ba bên nhóm nghiên cứu GS TSKH – Viện Khoa học vật liệu với nhóm nghiên cứu GS - Trường Đại học Luân Đôn GS – Trường đại học Đông Bắc – Hoa Kỳ tài trợ Văn phòng nghiên cứu phát triển không gian vũ trụ châu Á (AOARD) với mã số: FA2386, đề tài Hợp tác quốc tế cấp Viện Hàn lâm Khoa học công nghệ Việt Nam (VAST) mã số: QTSK01.01/20-21 QTPL01.01/20-21, nhiệm vụ thuộc chương trình hỗ trợ Nghiên cứu viên cao cấp (VAST) mã số: NVCC04.08/21-21, đề tài thuộc chương trình phát triển Vật lý với mã số: KHCBVL.02/21-22, nhiệm vụ khoa học công nghệ theo Nghị định thư với Nhật Bản mã số: NĐT.88.JP/20 Lời cảm ơn sau xin dành cho yêu thương, mong đợi chồng, hai hỗ trợ, cổ vũ tất người thân yêu gia đình nội, ngoại bạn bè thân thiết Những nguồn lực tinh thần lớn lao giúp con/em/chị/mẹ có thêm nhiều động lực để hoàn thành luận án Tác giả luận án iii LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng tơi hướng dẫn khoa học PGS.TS Các số liệu, kết nêu luận án trích dẫn lại từ báo xuất cộng Các số liệu, kết trung thực chưa công bố cơng trình khác Tác giả luận án iv DANH MỤC KÝ HIỆU VÀ CHỮ VIẾT TẮT Danh mục ký hiệu viết tắt a : Hằng số mạng Bhf : Trường siêu tinh tế C : Nhiệt dung riêng E : Năng lượng dị hướng Ea : Năng lượng kích hoạt dx : Mật độ khối lượng D : Kích thước hạt Dc : Kích thước tới hạn đơn đơmen DFESEM : Kích thước từ ảnh FESEM DTEM : Kích thước từ ảnh TEM DSP : Kích thước siêu thuận từ DXRD : Kích thước tinh thể xác định từ giản đổ XRD f : Tần số fo : Tần số tiêu chuẩn H : Cường độ từ trường HA : Trường dị hướng Hac : Cường độ từ trường xoay chiều HC : Lực kháng từ HK : Từ trường dị hướng Hmax : Từ trường lớn Hmin : Từ trường nhỏ K : Hằng số dị hướng Keff : Hằng số dị hướng hiệu dụng KV : Hằng số dị hướng từ tinh thể KS : Hằng số dị hướng bề mặt kB : Hằng số Boltzmann m : Khối lượng M : Từ độ M (0) : Từ độ K v Mr : Từ độ dư MS : Từ độ bão hòa n : Số hạt đơn vị thể tích P : Cơng suất Pf : Cơng suất tổn hao dịng điện xốy Fuco Ph : Cơng suất tổn hao từ trễ PL : Tổng công suất tổn hao Pr : Công suất tổn hao hồi phục rSP : Kích thước siêu thuận từ rSD : Kích thước đơn đô men T : Nhiệt độ TB : Nhiệt độ khóa Tb : Nhiệt độ bão hịa TC : Nhiệt độ Curie To : Nhiệt độ hiệu dụng TV : Nhiệt độ chuyển pha Verwey ΔT : Độ biến thiên nhiệt độ ∆Eq : Tách mức tứ cực điện ∆EM : Tách mức từ Zeeman t : Thời gian V : Thể tích hạt VH : Thể tích động học Vopt : Thể tích tối ưu hạt W : Năng lượng từ hóa ẟ : Dịch chuyển đồng phân η : Độ nhớt c : Khối lượng riêng 0 : Độ từ thẩm chân không χ’ : Phần thực độ cảm từ xoay chiều χ’’ : Phần ảo độ cảm từ xoay chiều τ : Thời gian hồi phục vi τB : Thời gian hồi phục Brown τeff : Thời gian hồi phục hiệu dụng τm : Thời gian hồi phục đặc trưng 𝜏𝑁 : Thời gian hồi phục Neél τ0 : Thời gian hồi phục đặc trưng ω0 : Tần số Larmor Danh mục chữ viết tắt Tiếng Anh Tiếng Việt AC : Alternating Current Dòng điện xoay chiều EC : Exchange Coupling Liên kết trao đổi Energy Dispersive X-ray Phổ tán xạ lượng tia X EDX ESC : Enhanced Spin Canting Nghiêng spin tăng cường FC : Field cooled Làm lạnh có từ trường FESEM : Field emission scanning Kính hiển vi điện tử quét phát xạ electron microscope trường FM : Ferrimagnetism Feri từ ILP : Intrinsic loss power Công suất tổn hao nội LRT : Linear response theory Lý thuyết đáp ứng tuyến tính LSPR : MHT Localized surface plasmon Cộng hưởng plasmon bề mặt cục resonance : Magnetic hyperthermia Nhiệt từ trị MIH : Magnetic Inductive Heating Đốt nóng cảm ứng từ MNPs : Magnetic nanoparticles Các hạt nano từ MRI : Magnetic resonance imaging Ảnh cộng hưởng từ NPs : Nanoparticles Các hạt nano PPMS : SAR : Specific Absoption Rate Tốc độ hấp thụ riêng SHP : Specific Heating Power Cơng suất đốt nóng riêng Physical property measurement system Hệ đo tính chất vật lý vii SPM : Superparamagnetic SQUID : SW : Stoner-Wohlfarth TEM : Transmission electron Superconducting interference device Siêu thuận từ quantum Giao thoa kế lượng tử siêu dẫn Mô hình mơ tả trạng thái từ hạt nano từ dị hướng Hiển vi điện tử truyền qua microscope VSM : Vibrating sample magnetometer Hệ từ kế mẫu rung XRD : X-ray difraction Nhiễu xạ tia X ZFC : Zero Field cooled Làm lạnh khơng có từ trường viii DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Hình 1.1 Cấu trúc tinh thể ferit spinel Hình 1.2 Cấu trúc spinel đảo tinh thể Fe3O4 Hình 1.3 Cấu hình cặp ion ferit spinel với khoảng cách góc tối ưu cho tương tác từ hiệu Hình 1.4 (a) Đường cong từ trễ M(H) cho hạt nano Fe3O4 siêu thuận từ (màu xanh) sắt từ (màu cam) (b) mối quan hệ lực kháng từ với kích thước hạt trạng thái từ tính vật liệu nano Fe3O4 Hình 1.5 Lực kháng từ, HC (a) từ độ bão hòa, MS (b) phụ thuộc vào kích thước hạt hạt nano Fe3O4 hình cầu Hình 1.6 ( a) Đường cong ZFC hạt nano Fe3O4 hình dạng khác từ trường 50 Oe (b) Đường cong từ hóa ban đầu hạt nano Fe3O4 với hình dạng khác Hình 1.7 (a) Sơ đồ chế sinh nhiệt hạt nano từ đặt từ trường xoay chiều bao gồm: Các trình quay spin (hồi phục Néel) quay hạt (hồi phục Brown) trạng thái siêu thuận từ tổn hao trễ trạng thái sắt từ (b) Kết tính SAR phụ thuộc kích thước hạt với tổn hao từ trễ tổn hao hồi phục Hình 1.8 Giá trị SAR thực nghiệm (điểm màu xanh) theo lý thuyết LRT phụ thuộc kích thước hạt nano Fe3O4 Hình 1.9 Giá trị SAR phụ thuộc kích thước hạt cường độ từ trường khác (184 - 625 Oe) hạt nano Fe3O4 Hình 1.10 Giá trị SAR phụ thuộc kích thước hạt Fe3O4 dạng hình cầu hình lập phương nồng độ mg/ml môi trường nước tần số 300 kHz từ trường thay đổi – 800 Oe Hình 1.11 Giá trị SAR phụ thuộc cường độ từ trường hạt nano Fe3O4 hình cầu, hình lập phương dạng với thể tích ~ 2000 nm3 Hình 1.12 (a) Đường cong nhiệt độ phụ thuộc thời gian đặt từ trường chất lỏng chứa hạt nano Fe3O4 với hình dạng khác với nồng độ 110 TÀI LIỆU THAM KHẢO [1] M D Nguyen, H V Tran, S Xu, and T R Lee, “Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications,” Applied Sciences (Switzerland), vol 11, no 23 2021 doi: 10.3390/app112311301 [2] F G da Silva, J Depeyrot, A F C Campos, R Aquino, D Fiorani, and D Peddis, “Structural and Magnetic Properties of Spinel Ferrite Nanoparticles,” J Nanosci Nanotechnol., vol 19, no 8, pp 4888–4902, 2019, doi: 10.1166/jnn.2019.16877 [3] K K Kefeni, T A M Msagati, T T Nkambule, and B B Mamba, “Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity,” Mater Sci Eng C, vol 107, p 110314, 2020, doi: 10.1016/j.msec.2019.110314 [4] C Martinez-Boubeta et al., “Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications,” Sci Rep., vol 3, pp 1–8, 2013, doi: 10.1038/srep01652 [5] J Mohapatra, M Xing, and J P Liu, “Magnetic and hyperthermia properties of CoxFe3-xO4 nanoparticles synthesized via cation exchange,” AIP Adv., vol 8, no 5, pp 3–8, 2018, doi: 10.1063/1.5006515 [6] J Mohapatra et al., “Enhancing the magnetic and inductive heating properties of Fe3O4 nanoparticles via morphology control,” Nanotechnology, vol 31, no 275706, 2020, doi: https://doi.org/10.1088/1361-6528/ab84a3 [7] E Fantechi, C Innocenti, M Albino, E Lottini, and C Sangregorio, “Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles,” J Magn Magn Mater., vol 380, pp 365–371, 2015, doi: 10.1016/j.jmmm.2014.10.082 [8] J H Lee et al., “Exchange-coupled magnetic nanoparticles for efficient heat induction,” Nat Nanotechnol., vol 6, no 7, pp 418–422, 2011, doi: 10.1038/nnano.2011.95 [9] S Tong, C A Quinto, L Zhang, P Mohindra, and G Bao, “Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles,” ACS Nano, vol 11, pp 6808– 6816, 2017 [10] Z Nemati et al., “Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size,” Journal of Physical Chemistry C, vol 122, no pp 2367–2381, 2018 doi: 10.1021/acs.jpcc.7b10528 [11] V Nandwana et al., “Exchange Coupling in Soft Magnetic Nanostructures and Its Direct Effect on Their Theranostic Properties,” ACS Appl Mater Interfaces, vol 10, no 32, pp 27233–27243, 2018, doi: 10.1021/acsami.8b09346 [12] L Wu, A Mendoza-Garcia, Q Li, and S Sun, “Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications,” Chem Rev., vol 116, no 18, pp 10473–10512, 2016, doi: 10.1021/acs.chemrev.5b00687 [13] H Gu, P L Ho, K W T Tsang, L Wang, and B Xu, “Using Biofunctional 111 Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration,” J Am Chem Soc., vol 125, no 51, pp 15702–15703, 2003, doi: 10.1021/ja0359310 [14] D Wang, J He, N Rosenzweig, and Z Rosenzweig, “Superparamagnetic Fe2O3 beads− CdSe/ZnS quantum dots core− shell nanocomposite particles for cell separation,” Nano Lett., vol 4, no 3, pp 409–413, 2004 [15] C Xu et al., “Dopamine as A Robust Anchor to Immobilize Function Moleucles on the Iron Oxide Shel of Magnetic Nanoparticles,” J Am Chem Soc., vol 126, no Figure 1, pp 9938–9939, 2004 [16] S J Son, J Reichel, B He, M Schuchman, and S B Lee, “Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery,” J Am Chem Soc., vol 127, no 20, pp 7316–7317, 2005, doi: 10.1021/ja0517365 [17] C Sun, J S H Lee, and M Zhang, “Magnetic nanoparticles in MR imaging and drug delivery,” Adv Drug Deliv Rev., vol 60, no 11, pp 1252–1265, 2008, doi: 10.1016/j.addr.2008.03.018 [18] O Veiseh, J W Gunn, and M Zhang, “Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging,” Adv Drug Deliv Rev., vol 62, no 3, pp 284–304, 2010, doi: 10.1016/j.addr.2009.11.002 [19] J H Lee et al., “On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles,” Angew Chemie - Int Ed., vol 52, no 16, pp 4384–4388, 2013, doi: 10.1002/anie.201207721 [20] D Ling et al., “Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors,” J Am Chem Soc., vol 136, no 15, pp 5647–5655, 2014, doi: 10.1021/ja4108287 [21] R Das et al., “Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia,” J Phys Chem C, vol 120, pp 10086–10093, 2016 [22] H Choi, C S Kim, and S B Kim, “Magnetic properties and hyperthermia of Zndoped Fe3O4 nanoparticles with plasma treatment,” J Korean Phys Soc., vol 72, no 2, pp 243–248, 2018, doi: 10.3938/jkps.72.243 [23] I Fizesan et al., “The effect of zn-substitution on the morphological, magnetic, cytotoxic, and in vitro hyperthermia properties of polyhedral ferrite magnetic nanoparticles,” Pharmaceutics, vol 13, no 12, pp 1–25, 2021, doi: 10.3390/pharmaceutics13122148 [24] H Jalili, B Aslibeiki, A G Varzaneh, and V A Chernenko, “The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles,” Beilstein J Nanotechnol., vol 10, pp 1348–1359, 2019, doi: 10.3762/BJNANO.10.133 [25] A R Yasemian, M Almasi Kashi, and A Ramazani, “Exploring the effect of Co concentration on magnetic hyperthermia properties of CoxFe3-xO4 nanoparticles,” Mater Res Express, vol 7, no 1, 2020, doi: 10.1088/20531591/ab6a51 [26] G A Flores, B O, V S Martínez, M L De La Cruz, and C C Patiño, “Synthesis 112 and Characterization of Cobalt Ferrite CoxFe3-xO4 Nanoparticles by Raman Spectroscopy and X-Ray Diffraction,” Int J Metall Met Phys., vol 5, no 1, 2020, doi: 10.35840/2631-5076/9247 [27] S Dutz, N Buske, J Landers, C Gräfe, H Wende, and J H Clement, “Biocompatible magnetic fluids of co-doped iron oxide nanoparticles with tunable magnetic properties,” Nanomaterials, vol 10, no 6, 2020, doi: 10.3390/nano10061019 [28] Z E Gahrouei, S Labbaf, and A Kermanpur, “Cobalt doped magnetite nanoparticles: Synthesis, characterization, optimization and suitability evaluations for magnetic hyperthermia applications,” Phys E Low-Dimensional Syst Nanostructures, vol 116, p 113759, 2020, doi: 10.1016/j.physe.2019.113759 [29] R Das, N P Kim, S B Attanayake, M H Phan, and H Srikanth, “Role of magnetic anisotropy on the hyperthermia efficiency in spherical Fe3−xCoxO4 (X = 0–1) nanoparticles,” Appl Sci., vol 11, no 3, pp 1–10, 2021, doi: 10.3390/app11030930 [30] A Sathya et al., “CoxFe3-xO4 Nanocubes for Theranostic Applications: Effect of Cobalt Content and Particle Size,” Chem Mater., vol 28, no 6, pp 1769–1780, 2016, doi: 10.1021/acs.chemmater.5b04780 [31] D Polishchuk et al., “Profound Interfacial Effects in CoFe2O4/ Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles,” Nanoscale Res Lett., vol 13, no 67, 2018, doi: 10.1186/s11671-018-2481-x [32] S H Moon, S H Noh, J H Lee, T H Shin, Y Lim, and J Cheon, “Ultrathin Interface Regime of Core-Shell Magnetic Nanoparticles for Effective Magnetism Tailoring,” Nano Lett., vol 17, no 2, pp 800–804, 2017, doi: 10.1021/acs.nanolett.6b04016 [33] A López-Ortega, M Estrader, G Salazar-Alvarez, A G Roca, and J Nogués, “Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles,” Phys Rep., vol 553, pp 1–32, 2015, doi: 10.1016/j.physrep.2014.09.007 [34] J Robles, R Das, M Glassell, M H Phan, and H Srikanth, “Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia,” AIP Adv., vol 8, no 5, pp 2–8, 2018, doi: 10.1063/1.5007249 [35] V Pilati et al., “Core/Shell Nanoparticles of Non-Stoichiometric Zn-Mn and ZnCo Ferrites as Thermosensitive Heat Sources for Magnetic Fluid Hyperthermia,” J Phys Chem C, vol 122, no 5, pp 3028–3038, 2018, doi: 10.1021/acs.jpcc.7b11014 [36] J C Pieretti, W R Rolim, F F Ferreira, C B Lombello, M H M Nascimento, and A B Seabra, “Synthesis, Characterization, and Cytotoxicity of Fe3O4@Ag Hybrid Nanoparticles: Promising Applications in Cancer Treatment,” J Clust Sci., vol 31, no 2, pp 535–547, 2020, doi: 10.1007/s10876-019-01670-0 [37] R Ramesh, M Geerthana, S Prabhu, and S Sohila, “Synthesis and 113 Characterization of the Superparamagnetic Fe3O4/Ag Nanocomposites,” J Clust Sci., vol 28, no 3, pp 963–969, 2017, doi: 10.1007/s10876-016-1093-9 [38] S J Cho et al., “Magnetic and moussbauer spectral study of core/shell structured Fe/Au nanoparticles,” Chem Mater., vol 18, no 4, pp 960–967, 2006, doi: 10.1021/cm0522073 [39] S Hara et al., “One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization,” Nanoscale Res Lett., vol 13, 2018, doi: 10.1186/s11671-018-2544-z [40] P H Linh et al., “Invitro toxicity test and searching the possibility of cancer cell line extermination by magnetic heating with using Fe O magnetic fluid,” J Phys Conf Ser., vol 187, p 012008, 2009, doi: 10.1088/17426596/187/1/012008 [41] P H Linh et al., “Magnetic nanoparticles : study of magnetic heating and adsorption / desorption for biomedical and environmental applications,” Int J Nanotechnol., vol 8, pp 399–413, 2011 [42] T K O Vuong et al., “Synthesis of high-magnetization and monodisperse Fe3O4 nanoparticles via thermal decomposition,” Mater Chem Phys., vol 163, pp 537– 544, 2015, doi: 10.1016/j.matchemphys.2015.08.010 [43] N X Phuc, N A Tuan, N C Thuan, V A Tuan, and L V Hong, “Magnetic nanoparticles as smart heating mediator for hyperthermia and sorbent regeneration,” Adv Mater Res., vol 55–57, pp 27–32, 2008, doi: 10.4028/www.scientific.net/amr.55-57.27 [44] S Mn et al., “Tuning of the Curie Temperature in,” J Korean Phys Soc., vol 52, no 5, pp 1492–1495, 2008 [45] D H Manh, P T Phong, P H Nam, D K Tung, N X Phuc, and I.-J Lee, “Structural and magnetic study of La0.7Sr0.3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications,” Phys B Condens Matter, vol 444, pp 94–102, 2014 [46] P H Linh et al., “Magnetic fluid based on Fe3O4 nanoparticles: Preparation and hyperthermia application,” J Phys Conf Ser., vol 187, 2009, doi: 10.1088/17426596/187/1/012069 [47] V T K Oanh et al., “A Novel Route for Preparing Highly Stable Fe3O4 Fluid with Poly(Acrylic Acid) as Phase Transfer Ligand,” J Electron Mater., vol 45, no 8, pp 4010–4017, 2016, doi: 10.1007/s11664-016-4650-y [48] P T Phong et al., “Iron Oxide Nanoparticles: Tunable Size Synthesis and Analysis in Terms of the Core–Shell Structure and Mixed Coercive Model,” J Electron Mater., vol 46, no 4, pp 2533–2539, 2017, doi: 10.1007/s11664-0175337-8 [49] P T Phong, P H Nam, D H Manh, and I J Lee, “Mn0.5Zn0.5Fe2O4 nanoparticles with high intrinsic loss power for hyperthermia therapy,” J Magn Magn Mater., vol 433, pp 76–83, 2017, doi: 10.1016/j.jmmm.2017.03.001 [50] P H Nam et al., “Effect of zinc on structure, optical and magnetic properties and 114 magnetic heating efficiency of Mn1-xZnxFe2O4 nanoparticles,” Phys B Condens Matter, vol 550, pp 428–435, 2018, doi: 10.1016/j.physb.2018.09.004 [51] P H Nam et al., “Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications,” New J Chem., vol 42, pp 14530–14541, 2018 [52] P T Phong et al., “Study of specific loss power of magnetic fluids with various viscosities,” J Magn Magn Mater., vol 428, no July 2016, pp 36–42, 2017, doi: 10.1016/j.jmmm.2016.12.008 [53] P T Phong, L H Nguyen, D H Manh, I J Lee, and N X Phuc, “Computer Simulations of Contributions of Néel and Brown Relaxation to Specific Loss Power of Magnetic Fluids in Hyperthermia,” J Electron Mater., vol 46, no 4, pp 2393–2405, 2017, doi: 10.1007/s11664-017-5302-6 [54] L H Nguyen et al., “The role of anisotropy in distinguishing domination of néel or brownian relaxation contribution to magnetic inductive heating: Orientations for biomedical applications,” Materials (Basel)., vol 14, no 8, pp 11–13, 2021, doi: 10.3390/ma14081875 [55] T T H Le, T Q Bui, T M T Ha, M H Le, H N Pham, and P T Ha, “Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy,” J Mater Sci., vol 53, no 19, pp 13826–13842, 2018, doi: 10.1007/s10853-018-2574-z [56] P T Ha, T T H Le, T Q Bui, H N Pham, A S Ho, and L T Nguyen, “Doxorubicin release by magnetic inductive heating and in vivo hyperthermiachemotherapy combined cancer treatment of multifunctional magnetic nanoparticles,” New J Chem., vol 43, no 14, pp 5404–5413, 2019, doi: 10.1039/C9NJ00111E [57] P T Phong et al., “Effect of Zinc Concentration on the Structural, Optical, and Magnetic Properties of Mixed Co-Zn Ferrites Nanoparticles Synthesized by LowTemperature Hydrothermal Method,” Metall Mater Trans A Phys Metall Mater Sci., vol 50, no 3, pp 1571–1581, 2019, doi: 10.1007/s11661-018-5096z [58] N T N Linh et al., “Combination of photothermia and magnetic hyperthermia properties of Fe3O4@Ag hybrid nanoparticles fabricated by seeded-growth solvothermal reaction,” Vietnam J Chem., vol 59, no 4, pp 431–439, 2021, doi: 10.1002/vjch.202000152 [59] T T N Nha et al., “Sensitive MnFe2O4-Ag hybrid nanoparticles with photothermal and magnetothermal properties for hyperthermia applications,” RSC Adv., vol 11, no 48, pp 30054–30068, 2021, doi: 10.1039/d1ra03216j [60] L M Tung et al., “Synthesis, characterizations of superparamagnetic Fe3O4-Ag hybrid nanoparticles and their application for highly effective bacteria inactivation,” J Nanosci Nanotechnol., vol 16, no 6, pp 5902–5912, 2016, doi: 10.1166/jnn.2016.11029 [61] D S Mathew and R S Juang, “An overview of the structure and magnetism of 115 spinel ferrite nanoparticles and their synthesis in microemulsions,” Chem Eng J., vol 129, no 1–3, pp 51–65, 2007, doi: 10.1016/j.cej.2006.11.001 [62] U Schwertmann, “Crystal structure,” Nature, vol 114, no 2877, pp 912–913, 1925, doi: 10.1038/114912a0 [63] L S Ganapathe, M A Mohamed, R M Yunus, and D D Berhanuddin, “Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation,” Magnetochemistry, vol 6, no 4, pp 1–35, 2020, doi: 10.3390/magnetochemistry6040068 [64] M H Phan et al., “Exchange bias effects in iron oxide-based nanoparticle systems,” Nanomaterials, vol 6, no 11, 2016, doi: 10.3390/nano6110221 [65] D Fouad et al., “ A Novel Drug Delivery System Based on Nanoparticles of Magnetite Fe O Embedded in an Auto Cross-Linked Chitosan ,” Chitin Chitosan - Physicochem Prop Ind Appl [Working Title], no November, 2020, doi: 10.5772/intechopen.94873 [66] Y B Khollam et al., “Microwave hydrothermal preparation of submicron-sized spherical magnetite (Fe3O4) powders,” Mater Lett., vol 56, no 4, pp 571–577, 2002, doi: 10.1016/S0167-577X(02)00554-2 [67] T Ozkaya, M S Toprak, A Baykal, H Kavas, Y Köseoǧlu, and B Aktaş, “Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization,” J Alloys Compd., vol 472, no 1–2, pp 18–23, 2009, doi: 10.1016/j.jallcom.2008.04.101 [68] J M De Teresa et al., “Magnetotransport properties of Fe3O4 thin films for applications in spin electronics,” Microelectron Eng., vol 84, no 5–8, pp 1660– 1664, 2007, doi: 10.1016/j.mee.2007.01.120 [69] I Riva’I, I O Wulandari, H Sulistyarti, and A Sabarudin, “Ex-Situ Synthesis of Polyvinyl alcohol(PVA)-coated Fe3O4 Nanoparticles by CoprecipitationUltrasonication Method,” IOP Conf Ser Mater Sci Eng., vol 299, no 1, 2018, doi: 10.1088/1757-899X/299/1/012065 [70] S Upadhyay, K Parekh, and B Pandey, “Influence of crystallite size on the magnetic properties of Fe3O4 nanoparticles,” J Alloys Compd., vol 678, pp 478– 485, 2016, doi: 10.1016/j.jallcom.2016.03.279 [71] T Tatarchuk, M Bououdina, J Judith Vijaya, and L John Kennedy, “Spinel ferrite nanoparticles: Synthesis, crystal structure, properties, and perspective applications,” Springer Proc Phys., vol 195, pp 305–325, 2017, doi: 10.1007/978-3-319-56422-7_22 [72] S N Kane and M Satalkar, “Correlation between magnetic properties and cationic distribution of Zn0.852xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping,” J Mater Sciene, vol 52, pp 3467–3477, 2017 [73] T R Tatarchuk, M Bououdina, N D Paliychuk, I P Yaremiy, and V V Moklyak, “Structural characterization and antistructure modeling of cobaltsubstituted zinc ferrites,” Journal of Alloys and Compounds, vol 694 pp 777– 791, 2017 doi: 10.1016/j.jallcom.2016.10.067 116 [74] U Cornell, R.M and Schwertmann, “Electronic, Electrical and Magnetic Properties and Colour,” in The Iron Oxides, John Wiley & Sons, Ltd, 2003, pp 111–137 doi: https://doi.org/10.1002/3527602097.ch6 [75] T Đ Hiền and L T Tài, Từ học vật liệu từ NXB Bách Khoa - Hà Nội, 2008 [76] A G Kolhatkar, A C Jamison, D Litvinov, R C Willson, and T R L 1, “Tuning the Magnetic Properties of Nanoparticles,” Int J Mol Sci., vol 14, pp 15977–16009, 2013, doi: doi:10.3390/ijms140815977 [77] K M Krishnan, “Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy,” IEEE Transactions on Magnetics, vol 46, no pp 2523–2558, 2010 doi: 10.1109/TMAG.2010.2046907 [78] P Guardia et al., “Water-Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment,” ACS Nano, vol 6, no pp 3080–3091, 2012 [79] J Ge, Y Hu, M Biasini, W P Beyermann, and Y Yin, “Superparamagnetic magnetite colloidal nanocrystal clusters,” Angewandte Chemie - International Edition, vol 46, no 23 pp 4342–4345, 2007 doi: 10.1002/anie.200700197 [80] A H Lu, E L Salabas, and F Schüth, “Magnetic nanoparticles: Synthesis, protection, functionalization, and application,” Angewandte Chemie International Edition, vol 46, no pp 1222–1244, 2007 doi: 10.1002/anie.200602866 [81] S Bedanta and W Kleemann, “Supermagnetism,” J Phys D Appl Phys., vol 42, no 013001, 2009, doi: doi:10.1088/0022-3727/42/1/013001 [82] S Xuan, Y X J Wang, J C Yu, and K C F Leung, “Tuning the grain size and particle size of superparamagnetic Fe 3O4 microparticles,” Chemistry of Materials, vol 21, no 21 pp 5079–5087, 2009 doi: 10.1021/cm901618m [83] S Xuan, F Wang, Y.-X J Wang, J C Yua, and K C.-F Leung, “Facile synthesis of size-controllable monodispersed ferrite nanospheres,” J Mater Chem., vol 20, pp 5086–5094, 2010 [84] A G Kolhatkar et al., “Magnetic Sensing Potential of Fe3O4 Nanocubes Exceeds That of Fe3O4 Nanospheres,” ACS Omega, vol 2, pp 8010–8019, 2017 [85] G F Goya, T S Berquó, F C Fonseca, and M P Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J Appl Phys., vol 94, no 3520, 2003, doi: doi: 10.1063/1.1599959 [86] P Dutta, S Pal, M S Seehra, N Shah, and G P Huffman, “Size dependence of magnetic parameters and surface disorder in magnetite nanoparticles,” J Appl Phys., vol 105, no 07B501, 2009, doi: http://dx.doi.org/10.1063/1.3055272 [87] Ò Iglesias, A Labarta, and X Batlle, “Exchange Bias Phenomenology and Models of Core/Shell Nanoparticles,” Journal of Nanoscience and Nanotechnology, vol 8, no pp 2761–2780, 2008 doi: 10.1166/jnn.2008.18252 [88] F Walz, “The Verwey transition—a topical review,” J Phys Condens MATTER, 117 vol 14, pp R285–R240, 2002 [89] J Garcıa and G Subıas, “The Verwey transition—a new perspective,” J Phys Condens MATTER, vol 16, pp R145–R178, 2004 [90] A Mitra, J Mohapatra, S S Meena, C V Tomy, and M Aslam, “Verwey Transition in Ultrasmall-Sized Octahedral Fe3O4 Nanoparticles,” J Phys Chem C, vol 118, no 33, pp 19356–19362, 2014 [91] Q Song and Z J Zhang, “Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals,” J Am Chem Soc, vol 126, pp 6164–6168, 2004 [92] D Stoppels, “Developments in soft magnetic power ferrites,” Journal of Magnetism and Magnetic Materials, vol 160 pp 323–328, 1996 doi: 10.1016/0304-8853(96)00216-8 [93] O Inoue, N Matsutani, and K Kugimiya, “Low Loss Mnzn-Ferrites: Frequency Dependence of Minimum Power Loss Temperature,” IEEE Transactions on Magnetics, vol 29, no pp 3532–3534, 1993 doi: 10.1109/20.281220 [94] J Carrey, B Mehdaoui, and M Respaud, “Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization,” J Appl Phys., vol 109, no 083921, 2011 [95] R Hergt et al., “Physical limits of hyperthermia using magnetite fine particles,” IEEE Transactions on Magnetics, vol 34, no PART p 37453754, 1998 [96] E C Stoner, F.R.S., and E P Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, vol 240, no 826 pp 599–642, 1948 doi: 10.1098/rsta.1948.0007 [97] S Dutz et al., “Hysteresis losses of magnetic nanoparticle powders in the single domain size range,” J Magn Magn Mater., vol 308, no 2, pp 305–312, 2007, doi: 10.1016/j.jmmm.2006.06.005 [98] S Noh et al., “Nanoscale Magnetism Control via Surface and Exchange Anisotropy for Optimized Ferrimagnetic Hysteresis,” Nano Lett., vol 12, pp 3716–3721, 2012 [99] R E Rosensweig, “Heating magnetic fluid with alternating magnetic fiel,” J Magn Magn Mater., vol 252, pp 370–374, 2002, doi: 10.1016/S00225347(17)32321-2 [100] Μ I Shliomis, “Magnetic Fluids,” Soviet Physics - Uspekhi, vol 17, no pp 153–169, 1974 [101] F Arteaga-Cardona, K Rojas-Rojas, R Costo, M A Mendez-Rojas, A Hernando, and P de la Presa, “Improving the magnetic heating by disaggregating nanoparticles,” J Alloys Compd., vol 663, pp 636–644, 2015, [Online] Available: http://dx.doi.org/10.1016/j.jallcom.2015.10.285 [102] E A Périgo et al., “Fundamentals and advances in magnetic hyperthermia,” Appl Phys Rev., vol 2, no 4, 2015, doi: 10.1063/1.4935688 118 [103] Q Ding et al., “Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia,” Biomaterials, vol 124, pp 35–46, 2017, doi: 10.1016/j.biomaterials.2017.01.043 [104] M Kallumadil, M Tada, T Nakagawa, M Abe, P Southern, and Q A Pankhurst, “Suitability of commercial colloids for magnetic hyperthermia,” Journal of Magnetism and Magnetic Materials, vol 321, no 10 pp 1509–1513, 2009 doi: 10.1016/j.jmmm.2009.02.075 [105] R Hergt and S Dutz, “Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy,” J Magn Magn Mater., vol 311, no SPEC ISS., pp 187–192, 2007, doi: 10.1016/j.jmmm.2006.10.1156 [106] X L Liu et al., “Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents,” J Mater Chem B, vol 2, no 1, pp 120–128, 2014, doi: 10.1039/c3tb21146k [107] J Mohapatra et al., “Size-dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: Scaling laws across the superparamagnetic size,” Phys Chem Chem Phys., vol 20, pp 12879–12887, 2018 [108] E C Vreeland et al., “Enhanced Nanoparticle Size Control by Extending LaMer’s Mechanism,” Chemist, vol 27, no 17, pp 6059–6060, 2015 [109] J Mohapatra, M Xing, and J P Liu, “Inductive Thermal Effect of Ferrite Magnetic Nanoparticles,” Materials (Basel)., vol 12, no 19, p 3208, Sep 2019, doi: 10.3390/ma12193208 [110] Y Hadadian, A P Ramos, and T Z Pavan, “Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions,” Scientific Reports, vol 9, no 2019 doi: 10.1038/s41598-019-54250-7 [111] I Ibrahim, I O Ali, T M Salama, A A Bahgat, and M M Mohamed, “Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M=Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction,” Appl Catal B Environ., vol 181, pp 389–402, 2016, doi: 10.1016/j.apcatb.2015.08.005 [112] F L Deepak et al., “A systematic study of the structural and magnetic properties of Mn-, Co-, and Ni-doped colloidal magnetite nanoparticles,” J Phys Chem C, vol 119, no 21, pp 11947–11957, 2015, doi: 10.1021/acs.jpcc.5b01575 [113] N A Spaldin, “Ferrimagnetism,” in Magnetic Materials, Cambridge University Press, 2010, pp 113–129 doi: 10.1017/CBO9780511781599.009 [114] P Saha, R Rakshit, and K Mandal, “Enhanced magnetic properties of Zn doped Fe3O4 nano hollow spheres for better bio-medical applications,” J Magn Magn Mater., vol 475, pp 130–136, 2019, doi: 10.1016/j.jmmm.2018.11.061 [115] L B de Mello, L C Varanda, F A Sigoli, and I O Mazali, “Co-precipitation synthesis of (Zn-Mn)-co-doped magnetite nanoparticles and their application in magnetic hyperthermia,” J Alloys Compd., vol 779, pp 698–705, 2019, doi: 10.1016/j.jallcom.2018.11.280 119 [116] I Conde-Leboran et al., “A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles,” J Phys Chem C, vol 119, no 27, pp 15698–15706, 2015, doi: 10.1021/acs.jpcc.5b02555 [117] X Li and C Kutal, “Synthesis and characterization of superparamagnetic CoxFe3-xO4 nanoparticles,” J Alloys Compd., vol 349, no 1–2, pp 264–268, 2003, doi: 10.1016/S0925-8388(02)00863-0 [118] I Galarreta, M Insausti, I G de Muro, I R de Larramendi, and L Lezama, “Exploring reaction conditions to improve the magnetic response of cobalt-doped ferrite nanoparticles,” Nanomaterials, vol 8, no 2, 2018, doi: 10.3390/nano8020063 [119] R Hergt, S Dutz, and M Röder, “Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia,” J Phys Condens Matter, vol 20, no 38, 2008, doi: 10.1088/0953-8984/20/38/385214 [120] R Hergt, S Dutz, and M Zeisberger, “Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia.,” Nanotechnology, vol 21, no 1, p 015706, 2010, doi: 10.1088/0957-4484/21/1/015706 [121] A Espinosa et al., “Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?,” Nanoscale, vol 7, no 45, pp 18872–18877, 2015, doi: 10.1039/c5nr06168g [122] A Espinosa et al., “Janus Magnetic-Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy,” Small, vol 16, no 11, pp 1– 14, 2020, doi: 10.1002/smll.201904960 [123] M Salimi, S Mosca, B Gardner, F Palombo, P Matousek, and N Stone, “Nanoparticle‐Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management,” Nanomaterials, vol 12, no 6, pp 1– 29, 2022, doi: 10.3390/nano12060922 [124] Z Yang, X Ding, and J Jiang, “Facile synthesis of magnetic–plasmonic nanocomposites as T1 MRI contrast enhancing and photothermal therapeutic agents,” Nano Res., vol 9, no 3, pp 787–799, 2016, doi: 10.1007/s12274-0150958-9 [125] L Liu et al., “Silver nanocrystals sensitize magnetic-nanoparticle-mediated thermo-induced killing of cancer cells,” Acta Biochim Biophys Sin (Shanghai)., vol 43, no 4, pp 316–323, 2011, doi: 10.1093/abbs/gmr015 [126] R Das et al., “Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers,” ACS Appl Mater Interfaces, vol 8, no 38, pp 25162–25169, 2016, doi: 10.1021/acsami.6b09942 [127] R Di Corato et al., “Magnetic nanobeads decorated with silver nanoparticles as cytotoxic agents and photothermal probes,” Small, vol 8, no 17, pp 2731–2742, 2012, doi: 10.1002/smll.201200230 [128] C C Qi and J Bin Zheng, “Synthesis of Fe3O4-Ag nanocomposites and their application to enzymeless hydrogen peroxide detection,” Chem Pap., vol 70, no 4, pp 404–411, 2016, doi: 10.1515/chempap-2015-0224 120 [129] W Fang et al., “Facile synthesis of tunable plasmonic silver core/magnetic Fe3O4 shell nanoparticles for rapid capture and effective photothermal ablation of bacterial pathogens,” New J Chem., vol 41, no 18, pp 10155–10164, 2017, doi: 10.1039/c7nj02071f [130] A Bee, R Massart, and S Neveu, “Synthesis of very fine maghemite particles,” Journal of Magnetism and Magnetic Materials, vol 149, no 1–2 pp 6–9, 1995 doi: 10.1016/0304-8853(95)00317-7 [131] D K Kim, Y Zhang, W Voit, K V Rao, and M Muhammed, “Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles,” J Magn Magn Mater., vol 225, pp 30–36, 2001 [132] D K Kim, M Mikhaylova, Y Zhang, and M Muhammed, “Protective Coating of Superparamagnetic Iron Oxide Nanoparticles,” Chem Mater., vol 15, pp 1617–1627, 2003, doi: https://doi.org/10.1021/cm021349j [133] W Wu, Q He, and C Jiang, “Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Funcitionalization Strategies,” Nanoscale Res Lett., vol 3, pp 397–415, 2008 [134] Y S Kang, S Risbud, J F Rabolt, and P Stroeve, “Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles,” Chem Mater., vol 8, pp 2209–2211, 1996 [135] A A Novakova et al., “Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles,” J Magn Magn Mater., vol 258–259, pp 354–357, 2003, doi: 10.1016/S0304-8853(02)01062-4 [136] J Lee, T Isobe, and M Senna, “Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation,” Colloids Surfaces A Physicochem Eng Asp., vol 109, pp 121–127, 1996, doi: 10.1016/09277757(95)03479-X [137] X Hu, J C Yu, and J Gong, “Fast production of self-assembled hierarchical αFe2O nanoarchitectures,” Journal of Physical Chemistry C, vol 111, no 30 pp 11180–11185, 2007 doi: 10.1021/jp073073e [138] S Giri, S Samanta, S Maji, S Ganguli, and A Bhaumik, “Magnetic properties of α-Fe2O3 nanoparticle synthesized by a new hydrothermal method,” Journal of Magnetism and Magnetic Materials, vol 285, no 1–2 pp 296–302, 2005 doi: 10.1016/j.jmmm.2004.08.007 [139] Z Jing and S Wu, “Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach,” Materials Letters, vol 58, no 27–28 pp 3637–3640, 2004 doi: 10.1016/j.matlet.2004.07.010 [140] X Liu, G Qiu, A Yan, Z Wang, and X Li, “Hydrothermal synthesis and characterization of FeOOH and Fe2O3 uniform nanocrystallines,” J Alloys Compd., vol 433, pp 216–220, 2007 [141] J Wang, J Sun, Q Sun, and Q Chen, “One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties,” 121 Mater Res Bull., vol 38, pp 1113–1118, 2003 [142] Y H Zheng, Y Cheng, F Bao, and Y S Wang, “Synthesis and magnetic properties of Fe3O4 nanoparticles,” Materials Research Bulletin, vol 41, no pp 525–529, 2006 doi: 10.1016/j.materresbull.2005.09.015 [143] T J Daou et al., “Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles,” Chem Mater., vol 18, pp 4399–4404, 2006 [144] S B Wang, Y L Min, and S H Yu, “Synthesis and magnetic properties of uniform hematite nanocubes,” Journal of Physical Chemistry C, vol 111, no pp 3551–3554, 2007 doi: 10.1021/jp068647e [145] M M Titirici, M Antonietti, and A Thomas, “A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach,” Chemistry of Materials, vol 18, no 16 pp 3808–3812, 2006 doi: 10.1021/cm052768u [146] S Sun et al., “Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles,” J Am Chem Soc., vol 126, no 1, pp 273–279, 2004, doi: 10.1021/ja0380852 [147] V K LAMER and R H DINEGA, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” J Am Chem Soc., vol 72, pp 4847– 4854, 1950 [148] S Zeng, Hao; Rice, Philip M.; Wang, Shan X.; Sun, “Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles,” J Am Chem Soc., vol 126, no 37, pp 11458–11459, 2004, doi: 10.1021/ja045911d [149] Z Xu, C Shen, Y Hou, H Gao, and S Sun, “Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles,” Chem Mater., vol 21, no 9, pp 1778–1780, 2009, doi: 10.1021/cm802978z [150] J.-H Lee et al., “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat Med., vol 13, no 1, pp 95–99, 2007, doi: 10.1038/nm1467 [151] J T Jang, H Nah, J H Lee, S H Moon, M G Kim, and J Cheon, “Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles,” Angew Chemie - Int Ed., vol 48, no 7, pp 1234–1238, 2009, doi: 10.1002/anie.200805149 [152] B D Cullity, Elements of X-ray Diffraction, Second Addison-Wesley Publishing Company, 1978 [153] C L Bianchi, R Djellabi, A Ponti, G S Patience, and E Falletta, “Experimental methods in chemical engineering: Mössbauer spectroscopy,” Can J Chem Eng., vol 99, no 10, pp 2105–2114, 2021, doi: 10.1002/cjce.24216 [154] L T H Phong, P H Nam, N Van Dang, P T Phong, and D H Manh, “Khả sinh nhiệt hạt nano CoxFe3-xO4,” TNU J Sci Tecnol., vol 227, pp 87–94, 2022 [155] A E Deatsch and B A Evans, “Heating efficiency in magnetic nanoparticle hyperthermia,” Journal of Magnetism and Magnetic Materials, vol 354 pp 163– 172, 2014 122 [156] L T H Phong et al., “Structural, magnetic and hyperthermia properties and their correlation in cobalt-doped magnetite nanoparticles,” RSC Adv., vol 12, no 2, pp 698–707, 2021, doi: 10.1039/d1ra07407e [157] J M Byrne et al., “Controlled cobalt doping in biogenic magnetite nanoparticles,” J R Soc Interface, vol 10: 201301, 2013, doi: 10.1098/rsif.2013.0134 [158] D Li, H Yun, B T Diroll, V V T D.- Nguyen, J M Kikkawa, and C B Murray, “Synthesis and Size-Selective Precipitation of Monodisperse Nonstoichiometric MxFe3–xO4 (M = Mn, Co) Nanocrystals and Their DC and AC Magnetic Properties,” Chem Mater., vol 28, pp 480–489, 2016 [159] H Topsøe, J Dumesic, and M B To, “MÖSSBAUER SPECTRA OF STOICHIOMETRIC AND NONSTOICHIOMETRIC Fe3O4 MICROCRYSTALS,” J Phys Colloq., vol 35 (C6), pp C6-411-C6-413, 1974 [160] T K McNab, R A Fox, and A J F Boyle, “Some Magnetic Properties of Magnetite (Fe3O4) Microcrystals,” J Appl Phys., vol 39, pp 5703–5711, 1968 [161] T C Gibb, Principles of Mössbauer Spectroscopy Chapman and hall, 1976 doi: 10.1007/978-1-4899-3023-1 [162] V Mameli et al., “Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles,” Nanoscale, vol 8, pp 10124–10137, 2016 [163] M Blume and J A Tjon, “Mössbauer spectra in a fluctuating environment,” Physical Review, vol 165, no pp 446–456, 1968 doi: 10.1103/PhysRev.165.446 [164] P Gütlich, E Bill, and A X Trautwein, “Mössbauer spectroscopy and transition metal chemistry: Fundamentals and applications,” Mössbauer Spectrosc Transit Met Chem Fundam Appl., pp 1–568, 2011, doi: 10.1007/978-3-540-88428-6 [165] R Hergt, S Dutz, R Müller, and M Zeisberger, “Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy,” J Phys Condens Matter, vol 18, no 38, pp S2919–S2934, 2006, doi: 10.1088/09538984/18/38/S26 [166] R Hiergeist et al., “Application of magnetite ferrofluids for hyperthermia,” Journal of Magnetism and Magnetic Materials, vol 201, no 1–3 pp 420–422, 1999 doi: 10.1016/S0304-8853(99)00145-6 [167] L T Lu et al., “Synthesis of magnetic cobalt ferrite nanoparticles with controlled morphology, monodispersity and composition: The influence of solvent, surfactant, reductant and synthetic conditions,” Nanoscale, vol 7, no 46, pp 19596–19610, 2015, doi: 10.1039/c5nr04266f [168] M Walker, P I Mayo, K O Grady, S W Charles, and R W Chantrell, “The magnetic properties of single-domain particles with cubic anisotropy: I Hysteresis loops,” J Phys Condens Matter, vol 5, pp 2779–2792, 1993 [169] T H P Le et al., “High heating efficiency of interactive cobalt ferrite nanoparticles,” Adv Nat Sci Nanosci Nanotechnol., vol 11, no 4, p 45005, 2020 123 [170] J P Fortin, C Wilhelm, J Servais, C Ménager, J C Bacri, and F Gazeau, “Sizesorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia,” Journal of the American Chemical Society, vol 129, no pp 2628–2635, 2007 doi: 10.1021/ja067457e [171] B D Cullity and C D Graham, INTRODUCTION TO MAGNETIC MATERIALS, Second Edi Wiley-IEEE Press, 2009 [172] D H Manh, P T Phong, T D Thanh, D N H Nam, L V Hong, and N X Phuc, “Size effects and interactions in La0.7Ca0.3MnO3 nanoparticles,” J Alloys Compd., vol 509, p 1373, 2011 [173] J Mohapatra, A Mitra, D Bahadur, and M Aslam, “Superspin glass behavior of self-interacting CoFe2O4 nanoparticles,” Journal of Alloys and Compounds, vol 628 pp 416–423, 2015 doi: 10.1016/j.jallcom.2014.12.197 [174] C R Vestal, Q Song, and Z J Zhang, “Effects of interparticle interactions upon the magnetic properties of CoFe 2O and MnFe 2O nanocrystals,” Journal of Physical Chemistry B, vol 108, no 47 pp 18222–18227, 2004 doi: 10.1021/jp0464526 [175] D Peddis, F Orru, A Ardu, C Cannas, A Musinu, and G Piccaluga, “Interparticle Interactions and Magnetic Anisotropy in Cobalt Ferrite Nanoparticles: Influence of Molecular Coating,” Chem Mater., vol 24, pp 1062– 1071, 2012 [176] W Wu, C Z Jiang, and V A L Roy, “Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications,” Nanoscale, vol 8, pp 19421–19474, 2016 [177] I S Lyubutin et al., “Exchange-coupling of hard and soft magnetic sublattices and magnetic anomalies in mixed spinel NiFe0.75Cr1.25O4 nanoparticles,” J Magn Magn Mater., vol 451, pp 336–343, 2018, doi: 10.1016/j.jmmm.2017.11.067 [178] F Liu, Y Hou, and S Gao, “Exchange-coupled nanocomposites: Chemical synthesis, characterization and applications,” Chemical Society Reviews, vol 43, no 23 pp 8098–8113, 2014 doi: 10.1039/c4cs00162a [179] Q A Pankhurst, J Connolly, S K Jones, and J Dobson, “Applications of magnetic nanoparticles in biomedicine,” J Phys D Appl Phys., vol 36, pp R167–R181 JOURNAL, 2003 [180] C Franjo, E Jiménez, T P Iglesias, J L Legido, and M I P Andrade, “Viscosities and Densities of Hexane + Butan-l-ol, + Hexan-1-ol, and + Octan-1ol at 298.15 K,” Journal of Chemical and Engineering Data, vol 40, no pp 68–70, 1995 doi: 10.1021/je00017a014 [181] C Blanco-Andujar et al., “Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia,” Nanomedicine, vol 11, no 14 pp 1889–1910, 2016 doi: 10.2217/nnm-2016-5001 [182] M F Hansen and S Mørup, “Models for the dynamics of interacting magnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, vol 184, no 124 pp L262-274, 1998 doi: 10.1016/s0304-8853(97)01165-7 [183] S Nappini et al., “Surface Charge and Coating of CoFe2O4 Nanoparticles: Evidence of Preserved Magnetic and Electronic Properties,” Journal of Physical Chemistry C, vol 119, no 45 pp 25529–25541, 2015 doi: 10.1021/acs.jpcc.5b04910 [184] D A Balaev et al., “Synthesis and Magnetic Properties of the Core–Shell Fe3O4/CoFe2O4 Nanoparticles,” Phys Solid State, vol 62, no 2, pp 285–290, 2020, doi: 10.1134/S1063783420020043 [185] B P Pichon et al., “Microstructural and magnetic investigations of Wüstite-spinel core-shell cubic-shaped nanoparticles,” Chem Mater., vol 23, no 11, pp 2886– 2900, 2011, doi: 10.1021/cm2003319 [186] F Liu et al., “Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell,” Angew Chemie - Int Ed., vol 53, no 8, pp 2176– 2180, 2014, doi: 10.1002/anie.201309723 [187] A Genc et al., “XEDS STEM tomography for 3D chemical characterization of nanoscale particles,” Ultramicroscopy, vol 131, pp 24–32, 2013, doi: 10.1016/j.ultramic.2013.03.023 [188] O Masala et al., “Preparation of magnetic spinel ferrite core/shell nanoparticles: Soft ferrites on hard ferrites and vice versa,” Solid State Sci., vol 8, no 9, pp 1015–1022, 2006, doi: 10.1016/j.solidstatesciences.2006.04.014 [189] H M Do et al., “Oxidation-controlled magnetism and Verwey transition in Fe/Fe3O4 lamellae,” J Sci Adv Mater Devices, vol 5, no 2, pp 263–269, 2020, doi: 10.1016/j.jsamd.2020.04.001 [190] S Ammar et al., “Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium,” J Mater Chem., vol 11, no 1, pp 186–192, 2001, doi: 10.1039/b003193n [191] S D Oberdick et al., “Spin canting across core/shell Fe3O4/MnxFe3-xO4 nanoparticles,” Sci Rep., vol 8, no 1, pp 1–12, 2018, doi: 10.1038/s41598-01821626-0 [192] S Chandra, H Khurshid, W Li, G C Hadjipanayis, M H Phan, and H Srikanth, “Spin dynamics and criteria for onset of exchange bias in superspin glass Fe/γ-Fe 2O core-shell nanoparticles,” Phys Rev B - Condens Matter Mater Phys., vol 86, no 1, pp 1–8, 2012, doi: 10.1103/PhysRevB.86.014426 [193] L Thị, H Phong, P H Nam, T N Bách, P T Phong, and Đ H Mạnh, “Tổng hợp hiệu sinh nhiệt hạt nano tổ hợp Fe O -Ag,” Tạp chí Nghiên cứu KH&CN quân sự, vol 77, pp 111–119, 2022