(Luận Văn) Phân Lập Và Tuyển Chọn Một Số Chủng Nấm Trichoderma Có Hoạt Tính Kháng Nấm Từ Đất Trồng Cây Cây Ăn Quả Và Cây Công Nghiệp Tại Tỉnh Thái Nguyên
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 95 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
95
Dung lượng
1,17 MB
Nội dung
THAI NGUYEN UNIVERSITY UNIVERSITY OF AGRICULTURE AND FORESTRY HOANG THI MAI Topic title: a lu ALGAL CELL CULTURE IN MICROFLUIDIC DEVICES AND n MICROENVIRONMENT n va tn to BACHELOR THESIS p ie gh nl w Full-time Major : Biotechnology : Biotechnology and Food Technology d oa Study Mode : n va Batch an lu Faculty : 2013 – 2017 ll fu m tz n oi z @ om l.c gm Thai Nguyen, 12/6/2017 THAI NGUYEN UNIVERSITY UNIVERSITY OF AGRICULTURE AND FORESTRY HOANG THI MAI Topic title: ALGAL CELL CULTURE IN MICROFLUIDIC DEVICES AND MICROENVIRONMENT a lu BACHELOR THESIS n n va Major : Biotechnology Faculty : Biotechnology and Food Technology Batch : 2013 – 2017 Full-time nl w p ie gh tn to Study Mode : d oa Dr Panwong Kuntanawat Dr Nguyen Xuan Vu Mr Phongsakorn Kunhorm ll fu n va an lu Supervisors : m tz n oi z gm @ Thai Nguyen, 12/6/2017 om l.c DOCUMENTATION PAGE WITH ABSTRACT Thai Nguyen University of Agriculture and Forestry Major Biotechnology Student name Hoang Thi Mai Student ID DTN1353150021 Thesis title Algal cell culture in microfluidic devices and microenvironment Supervisors Dr Panwong Kuntanawat Dr Nguyen Xuan Vu Mr.Phongsakorn Kunhorm Abstract: Arthrospira platensis is a filamentous multicellular cyanobacterium that has two distinct shapes: helical and straight filaments They have high nutritional value, chemical composition such as protein, pigments, antioxidant, fatty acids Microfluidics devices that were applied in various fields such as biological, a lu biomedical, biotechnology and chemical analyses A.platensis was captured in n n va the microfluidics devices in order to observed activation, fragmentation time, tn to change color, life cycles It was performed with total 20 filaments (10 filaments gh of C005 str and 10 filaments of Central Lab str) in two different conditioned p ie medium The result was based on measure length to comparison growth length, fragmentation time, growth rate of filament and strain In the standard d oa nl w Zarrouk’s medium, length and growth rate of Central Lab str is faster than C005 str, fragmentation time is the same In the stationary from cell culture: an lu Fragmentation was expressed with two filaments of C005 str (rate 40%) and n va three filaments of Central Lab str (rate 60%) Moreover, the growth rate of ll fu Central Lab str was faster than C005 str The both strains of standard Zarrouk’s m medium were grew faster than Zarrouk’s stationary from cell culture n oi Key words C005 str, Central Lab str, microfluidic devices, 38 z Number of pages tz growth length, fragmentation time, growth rate om l.c gm @ i (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên ACKNOWLEDGEMENT Foremost, I would like to express my deep and sincere gratitude to my supervisor Dr Panwong Kuntanawat from the School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi (KMUTT), Thailand, for providing me the opportunity to conduct research in his lab and giving me endless support in the past six months His insights, wisdoms, advices and enthusiasm for research have greatly influenced me and made the completion of my dissertation possible I would also like to thank Dr Nguyen Xuan Vu from the Faculty of Biotechnology and Food of Thai Nguyen University of Agriculture and Forestry (TUAF) who used to help, support and give me encouragements during this thesis implementation I would also like to extend my heartfelt thanks to my lectures of Biotechnology and Food Department, TUAF who imparted me a lot of knowledge through four years of university The knowledge not only helped me with my research, but also created a basic and soul foundation for me to start a lu n the job in the future Further, I would also like to express my sincere gratitude to va Ms Trinh Thi Chung for providing me the opportunity to develop my skills by n I sincerely thank to the teachers, the laboratory staffs and students at the gh tn to doing an internship abroad p ie laboratory for their regards and giving me an opportunity to research in the nl w laboratory I would also especially thank Mr Phongsakorn Kunhorm who always helped, cared, instructed and taught me during my practicing in Thailand d oa Finally, I would like to thank my family and my friends for their love and lu n va an support I could not have done this without you ll fu Many thank and best regards m Student n oi tz Hoang Thi Mai z om l.c gm @ ii (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên TABLE OF CONTENT PART INTRODUCTION 1.1 Background 1.1.1 Microalgae 1.1.2 General Arthrospira platensis 1.1.2.1 Morphology and taxonomy for Arthrospira platensis 1.1.2.2 Effect of temperatures 1.1.2.3 Effect of pH 1.1.3 Microfluidics devices 1.1.3.1 An introduction to soft lithography 1.1.3.2 Advantages of microfluidic for cell culture 1.1.3.3 Microfluidic devices for cell biology 10 a lu n 1.1.3.4 Microfluidic devices for single cell analysis 11 n va 1.2 Objectives 11 tn to 1.3 Scope of study 12 gh p ie PART 2: METHODS 13 nl w 2.1 Equipments and materials 13 2.1.1 Equipments 13 d oa 2.1.2 Materials 13 an lu 2.1.2.1 Medium culture 13 n va ll fu 2.1.2.2 Algal strains 14 m 2.1.2.3 Microfluidic devices design: an electrostatic using microwell based n oi microfluidic devices 15 tz 2.2 Methods 16 z om l.c gm @ 2.2.1 Algal strains cultivation 16 iii (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên 2.2.2 Make microfluidic devices 17 2.2.3 Cell loading and cultivation in the microwell 18 2.2.4 Imaging of cells and analysis methods 19 PART RESULTS AND DISCUSSION 21 3.1 Cells/filaments in the standard Zarrouk’s medium .21 3.1.1 Comparison of growth length of single filament before fragmenting 21 3.1.2 Compare fragmentation time of single filaments 22 3.1.3 Comparison of growth rate of single filaments 23 3.2 Filaments in the Zarrouk’s medium from stationary cell culture 25 3.2.1 Comparison of growth length of single filaments before fragmenting 26 3.2.2 Compare fragmentation time of single filament 26 3.2.3 Comparison of growth rate of single filaments 27 a lu 3.3 Compare growth rate of the same strain in the modified standard Zarrouk’s n media and Zarrouk’s medium from stationary cell culture .28 n va 3.4 Discussion: Life cycle of Arthrospira platensis .29 tn to PART CONCLUSIONS AND SUGGESTIONS 31 gh 4.1 Conclusions .31 p ie nl w 4.1.1 Cells/filaments were cultured in the standard Zarrouk’s medium 31 4.1.2 Cells/ filaments in the Zarrouk’s medium from stationary cell culture 31 d oa 4.2 Suggestions 31 lu ll fu n va an REFERENCE 33 m tz n oi z om l.c gm @ iv (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên - Continually study, observe activation the growth rate of two strains ( C005 str and Central Lab str) in the Zarrouk’s medium with high salinity (NaCl=0.5M and NaCl=0.75M) using microwell based microfluidic devices Comparison the growth rate of the same strain or different strain with the same medium or different medium (growth length, fragmentation time, growth rate) in the three different mediums - The ability to survey the growth rate of two strains when the algal cells were cultured in the glass slide and observe activation under the confocal microscopy n a lu n va p ie gh tn to d oa nl w ll fu n va an lu m tz n oi z om l.c gm @ 32 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên REFERENCE Books Andersen, R A (Ed.) (2005) Algal culturing techniques Academic press Nag, S., & Banerjee, R (2012) Fundamentals of medical implant materials ASM handbook, 23, 6-17 Muhling, M (2000) Characterization of Arthrospira (Spirulina) strains (Doctoral dissertation, Durham University) Nguyen, N T., & Wereley, S T (2002) Fundamentals and applications of microfluidics Artech house Sili, C., Torzillo, G., & Vonshak, A (2012) Arthrospira (Spirulina) In Ecology of Cyanobacteria II (pp 677-705) Springer Netherlands Vonshak, A (Ed.) (1997) Spirulina platensis arthrospira: physiology, cellbiology and biotechnology CRC Press a lu n Journals n va Ali, S K., & Saleh, A M (2012) Spirulina—an overview International gh tn to Journal of Pharmacy and Pharmaceutical Sciences, 4(3), 9-15 Balloni, W., Tomaselli, L., Giovannetti, L., & Margheri, M C (1980) p ie Biologia fondamentale del genere Spirulina Prospettive della coltura di nl w Spirulina in Italia Consiglio Nazionale delle Ricerche, Rome, 49-85 d oa Berthier, E., Young, E W., & Beebe, D (2012) Engineers are from PDMS- an lu land, Biologists are from Polystyrenia Lab on a Chip, 12(7), 1224-1237 Bhattacharya, S., Datta, A., Berg, J M., & Gangopadhyay, S (2005) Studies n va on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under ll fu oxygen-plasma treatment and correlation with bond strength Journal of m n oi microelectromechanical systems, 14(3), 590-597 tz Bithi, S S., & Vanapalli, S A (2010) Behavior of a train of droplets in a fluidic network with hydrodynamic traps Biomicrofluidics, 4(4), 044110 z om l.c gm @ 33 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên Borowitzka, M A (2013) High-value products from microalgae—their development and commercialisation Journal of Applied Phycology, 25(3), 743-756 Chen, C C., Liu, Y J., & Yao, D J (2015) Paper-based device for separation and cultivation of single microalga Talanta, 145, 60-65 Chisti, Y (2007) Biodiesel from microalgae Biotechnology advances, 25(3), 294-306 Ciferri, O (1983) Spirulina, the edible microorganism Microbiological reviews, 47(4), 551 10 Colla, L M., Furlong, E B., & Costa, J A V (2007) Antioxidant properties of Spirulina (Arthospira) platensis cultivated under different temperatures and nitrogen regimes Brazilian archives of biology and technology, 50(1), 161-167 11 Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R A., & Steyer, J P (2011) Life-cycle assessment of microalgae culture coupled to biogas a lu n production Bioresource technology, 102(1), 207-214 n va 12 Devadas, D., & Young, E W (2016) Microfluidics for Cell Culture International Publishing p ie gh tn to In Microfluidic Methods for Molecular Biology (pp 323-347) Springer 13 Dewan, A., Kim, J., McLean, R H., Vanapalli, S A., & Karim, M N (2012) Growth kinetics of microalgae in microfluidic static droplet nl w arrays Biotechnology and bioengineering, 109(12), 2987-2996 d oa 14 Ferreira, L S., Rodrigues, M S., Converti, A., Sato, S., & Carvalho, J lu n va an (2012) Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation ll fu systems Biotechnology and bioengineering, 109(2), 444-450 m for in vitro cell culture microfluidic devices n oi 15 Gao, D., Liu, H., Jiang, Y., & Lin, J M (2012) Recent developments in for cell-biology tz research TrAC Trends in Analytical Chemistry, 35, 150-164 z @ 16 Gomez-Sjoberg, R., Leyrat, A A., Houseman, B T., Shokat, K., & Quake, om l.c gm S R (2010) Biocompatibility and Reduced Drug Absorption of Sol Gel34 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên Treated Poly (dimethyl siloxane) for Microfluidic Cell Culture Applications Analytical chemistry, 82(21), 8954-8960 17 Gomez-Sjoeberg, R., Leyrat, A A., Pirone, D M., Chen, C S., & Quake, S R (2007) Versatile, fully automated, microfluidic cell culture system Analytical chemistry, 79(22), 8557-8563 18 Halldorsson, S., Lucumi, E., Gómez-Sjưberg, R., & Fleming, R M (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices Biosensors and Bioelectronics, 63, 218231 19 Hassler, C., Boretius, T., & Stieglitz, T (2011) Polymers for neural implants Journal of Polymer Science Part B: Polymer Physics, 49(1), 1833 20 Huang, S Y., & Chen, C P (1986) Growth kinetics and cultivation of spirulina platensis Journal of the Chinese Institute of Engineers, 9(4), 355-363 a lu n 21 Jeeji Bai, N (1985) Competitive exclusion or morphological n va transformation? A case study with Spirulina fusiformis Algological tn to Studies/Archiv für Hydrobiologie, Supplement Volumes, 191-199 Bai, gh 22 Jeeji N (1985) Competitive exclusion or morphological p ie transformation? A case study with Spirulina fusiformis Algological nl w Studies/Archiv für Hydrobiologie, Supplement Volumes, 191-199 23 Jeeji Bai, N., & Seshadri, C V (1980) On coiling and uncoiling of d oa trichomes in the genus Spirulina Algological Studies/Archiv für lu an Hydrobiologie, Supplement Volumes, 32-47 n va 24 Jeeji Bai, N., & Seshadri, C V (1980) On coiling and uncoiling of ll fu trichomes in the genus Spirulina Algological Studies/Archiv für m n oi Hydrobiologie, Supplement Volumes, 32-47 25 Juang, Y J., & Chang, J S (2016) Applications of microfluidics in tz microalgae biotechnology: A review Biotechnology journal, 327-335 z 26 Kim, J Y H., Kwak, H S., Sung, Y J., Choi, H I., Hong, M E., Lim, H @ om l.c gm S., & Sim, S J (2016) Microfluidic high-throughput selection of 35 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên microalgal strains with superior photosynthetic productivity using competitive phototaxis Scientific reports, 27 Kuntanawat, P., Ruenin, J., Phatthanakun, R., Kunhorm, P., Surareungchai, W., Sukprasong, S., & Chomnawang, N (2014) An electrostatic microwell–based biochip for phytoplanktonic cell trapping Biomicrofluidics, 8(3), 034108 28 Mata, T M., Martins, A A., & Caetano, N S (2010) Microalgae for biodiesel production and other applications: a review Renewable and sustainable energy reviews, 14(1), 217-232 29 Melin, J., & Quake, S R (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation Annu Rev Biophys Biomol Struct., 36, 213-231 30 Meyvantsson, I., & Beebe, D J (2008) Cell culture models in microfluidic systems Annu Rev Anal Chem., 1, 423-449 31 Meyvantsson, I., & Beebe, D J (2008) Cell culture models in microfluidic a lu n systems Annu Rev Anal Chem., 1, 423-449 n va 32 Mühling, M., Belay, A., & Whitton, B A (2005) Variation in fatty acid Phycology, 17(2), 137-146 p ie gh tn to composition of Arthrospira (Spirulina) strains Journal of Applied 33 Ogbonda, K H., Aminigo, R E., & Abu, G O (2007) Influence of temperature and pH on biomass production and protein biosynthesis in a nl w d oa putative Spirulina sp Bioresource Technology, 98(11), 2207-2211 34 Paguirigan, A L., & Beebe, D J (2009) From the cellular perspective: lu n va an exploring differences in the cellular baseline in macroscale and microfluidic cultures Integrative Biology, 1(2), 182-195 ll fu 35 Paoletti, C., Materassi, C., & Pelosi, E (1971) Lipid composition varriation m tz 65 n oi of some mutant strains of Spirulina platensis Am Microbiol Enzymol, 21, 36 Raimes, W., Rubi, M., Super, A., Marques, M P., Veraitch, F., & Szita, N z study Process Biochemistry om l.c gm @ (2016) Transfection in perfused microfluidic cell culture devices: A case 36 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên 37 Richmond, A E., & Soeder, C J (1986) Microalgaculture Critical reviews in Biotechnology, 4(3), 369-438 38 Romay, C H., Armesto, J., Remirez, D., Gonzalez, R., Ledon, N., & Garcia, I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae Inflammation Research, 47(1), 36-41 39 Rubakhin, S S., Romanova, E V., Nemes, P., & Sweedler, J V (2011) Profiling metabolites and peptides in single cells Nature methods, 8(4s), S20-S29 40 Ruenin, J., Sukprasong, S., Phatthanakun, R., Chomnawang, N., & Kuntanawat, P (2012) Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior using X-ray LIGA Technology World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 6(9), 742-745 41 Ruenin, J., Sukprasong, S., Phatthanakun, R., Chomnawang, N., & a lu n Kuntanawat, P (2012) Fabrication of Microfluidic Device for va Quantitative Monitoring of Algal Cell Behavior using X-ray LIGA n International Journal of Biological, Biomolecular, Agricultural, Food and p ie gh tn to Technology World Academy of Science, Engineering and Technology, Biotechnological Engineering, 6(9), 742-745 42 Sánchez, M., Bernal-Castillo, J., Rozo, C., & Rodríguez, I (2003) Spirulina nl w (Arthrospira): an edible microorganism: a review Universitas d oa Scientiarum, 8(1), 7-24 lu n va an 43 Satyanarayana, S., Karnik, R N., & Majumdar, A (2005) Stamp-and-stick room-temperature bonding technique for microdevices Journal of ll fu Microelectromechanical Systems, 14(2), 392-399 m n oi 44 Schlesinger, P., Belkin, S., & Boussiba, S (1996).Sodium deprivation under alkaline conditions cause rapid death of the filamentous cyanobacterium tz spirulina platensis Journal of phycology, 32(4), 608-613 z om l.c gm @ 37 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên 45 Singh, S., Kate, B N., & Banerjee, U C (2005) Bioactive compounds from cyanobacteria and microalgae: an overview Critical reviews in biotechnology, 25(3), 73-95 46 Singh, J., & Gu, S (2010) Biomass conversion to energy in India—a critique Renewable and Sustainable Energy Reviews, 14(5), 1367-1378 47 Stal, L J., & Moezelaar, R (1997) Fermentation in cyanobacteria FEMS microbiology reviews, 21(2), 179-211 48 Stanier, R Y., Pfennig, N., & Trüper, H G (1981) Introduction to the phototrophic prokaryotes In The Prokaryotes (pp 197-211) Springer Berlin Heidelberg 49 Tomaselli, L., Palandri, M R., & Tredici, M R (1996) On the correct use of the Spirulina designation Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 539-548 50 Vedel, S., Tay, S., Johnston, D M., Bruus, H., & Quake, S R (2013) a lu Migration of cells in a social context Proceedings of the National n Academy of Sciences, 110(1), 129-134 n va 51 Vonshak, A., & Richmond, A (1988) Mass production of the blue-green tn to alga Spirulina: an overview Biomass, 15(4), 233-247 p ie gh 52 Weibel, D B., DiLuzio, W R., & Whitesides, G M (2007) Microfabrication meets microbiology Nature Reviews Microbiology, 5(3), nl w 209-218 G d oa 53 Whitesides, M (2006) The origins and the future of microfluidics Nature, 442(7101), 368-373 lu n va an 54 Yeo, L Y., Chang, H C., Chan, P P., & Friend, J R (2011) Microfluidic devices for bioapplications small, 7(1), 12-48 ll fu 55 Young, E W., & Beebe, D J (2010) Fundamentals of microfluidic cell controlled Society tz Reviews, 39(3), 1036-1048 microenvironments Chemical n oi in m culture z om l.c gm @ 38 (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên (Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên(Luỏưn.vn).phÂn.lỏưp.v.tuyỏằn.chỏằãn.mỏằt.sỏằ.chỏằĐng.nỏƠm.trichoderma.c.hoỏĂt.tưnh.khĂng.nỏƠm.tỏằô.ỏƠt.trỏằng.cÂy.cÂy.n.quỏÊ.v.cÂy.cng.nghiỏằp.tỏĂi.tỏằnh.thĂi.nguyên