BIOMIMETIC BASED APPLICATIONS Edited by Anne George Biomimetic Based Applications Edited by Anne George Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access articles distributed under the Creative Commons Non Commercial Share Alike Attribution 3.0 license, which permits to copy, distribute, transmit, and adapt the work in any medium, so long as the original work is properly cited. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Ivana Lorkovic Technical Editor Teodora Smiljanic Cover Designer Martina Sirotic Image Copyright Tischenko Irina, 2010. Used under license from Shutterstock.com First published March, 2011 Printed in India A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from orders@intechweb.org Biomimetic Based Applications, Edited by Anne George p. cm. ISBN 978-953-307-195-4 free online editions of InTech Books and Journals can be found at www.intechopen.com Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Preface IX Biomimetic Epoxidation of Olefins Catalyzed by Metalloporphyrins with Molecular Oxygen 1 Hong-Bing Ji and Xian-Tai Zhou Biomimetic Oxidation of Hydrocarbons with Air over Metalloporphyrins 31 Guofang Jiang, Qiang Liu and Cancheng Guo Homogeneous and Heterogeneous Free-Based Porphyrins Incorporated to Silica Gel as Fluorescent Materials and Visible Light Catalysts Mimic Monooxygenases 59 Mariusz Trytek, Marek Majdan and Jan Fiedurek Physicochemical Peculiarities of Iron Porphyrin - Containing Electrodes in Catalase - and Peroxidase - Type Biomimetic Sensors 105 T.M.Nagiev Design of Biomimetic Models Related to the Active Sites of Fe-Only Hydrogenase 123 Yu-Chiao Liu, Ling-Kuang Tu, Tao-Hung Yen and Ming-Hsi Chiang The Improvement of LC-MS/MS Proteomic Detection with Biomimetic Affinity Fractionation 141 Rong-Xiu Li, Qing-Qiao Tan and De-Xian Dong Green Oxidation Reactions of Drugs Catalyzed by Bio-inspired Complexes as an Efficient Methodology to Obtain New Active Molecules 163 Emerson Henrique de Faria, Gustavo Pimenta Ricci, Frederico Matias Lemos, Marcio Luis Andrade e Silva, Ademar Alves da Silva Filho, Paulo Sérgio Calefi, Eduardo José Nassar and Katia Jorge Ciuffi Contents Contents VI Yu Takano, Kizashi Yamaguchi and Haruki Nakamura Daqing Wei and Yu Zhou Ana Maria Carmona-Ribeiro, Lilian Barbassa and Letícia Dias de Melo Chao-Hai Wei, Xiao-Xuan Zhang, Yuan Ren and Xu-Biao Yu Saccharomyces cerevisiae Denise Schach, Marc Großerüschkamp, Christoph Nowak, Carola Hunte, Wolfgang Knoll and Renate L. C. Naumann Ryo Yoshida Peng Yang, Wantai Yang, Xu Zhang and Jinchun Chen Maura Pellei and Carlo Santini Andreas Katsiamis and Emmanuel Drakakis Benjamin Evans and Rich Superfine Fernando P. Lima, Nicholas P. Burnett, Brian Helmuth, Nicole Kish, Kyle Aveni-Deforge and David S. Wethey Peng Yang and Rumiana Dimova Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Contents VII Reinaldo de Bernardi, Arturo Forner-Cordero and José Jaime Da Cruz Chapter 20 Pref ac e !"#$"$%&"'() "() &*%) ('"%+'%) #,) %$ /&"+0) +/&-1%2() 3%("0+4) 5+) +/&-1%6) ."7"+0) #10/+"($() (8+&*%("9%)$"+%1/."9%3)&"((-%()/+3)&*"():1#'%(()#,);"#$"+%1/."9/&"#+)"()-+3%1)(&1"'&);"#< .#0"'/.)'#+&1#.4)5&)"+7#.7%()&*%)"+&%1/'&"#+()#,)(%7%1/.);"#.#0"'/.)$/'1#$#.%' %()/$#+0) &*%$(%.7%()/+3)="&*)&*%)$"+%1/.)'#$:#+%+&(4)>%+%1/ 86)+/&-1%()3%("0+):1"+'":.%()/1%) ;/(%3)#+)/)?!#Ĵ)#$<@:A)(&1/&%084)B-'*):1#'%((%().%/3)&#)&*%),#1$/&"#+)#,)*"%1/1'*"'/ 8) (&1-'&-1%3) #10/+"'<"+#10/+"') '#$:#("&%()="&*)$%'*/+"'/.) :1#:%1&"%() #:&"$"9%3) ,#1) /) 0"7%+),-+'&"#+4)C)'#$$#+)&*%$%)"+)$"+%1/."9%3)&"((-%()"()&*%)"+&"$/&%)"+&%1/'&"#+);%< &=%%+)&*%)#10/+"')/+3)"+#10/+"'):*/(%()/+3)&*"().%/3()&#)&*%)-+"D-%):1#:%1&"%()(%%+)"+) ;"#.#0"'/.)$/&%1"/.(4))E*%1%,#1%6)-+3%1(&/+3"+0)+/&-1%()3%("0+):1"+'":.%()/+3) &"$/&%.8) $"$"'F"+0)&*%):1#'%(()$/8):1#7"3%)+%=)/::1#/'*%()&#)(8+&*%("9%);"#$/&%1"/.()="&*) -+"D-%) :1#:%1&"%(),#1) 7/1"#-()/::."'/&"#+(4)!"#$"$%&"'()/() /) ('"%+&")') 3"('":."+%)*/() %G:%1"%+'%3)/+)%G'%:&"#+/.)3%7%.#:$%+&4)5&():#&%+&"/.)"+)(%7%1/.)/::."'/&"#+()(-'*)/() $%3"'/.6)7%&%1"+/186)3%+&/.)('"%+'%6)$/&%1"/.)('"%+'%)/+3)+/+#&%'*+#.#08);%/1()="&+%(() &#)&*%)"$:#1&/+'%)#,)-+3%1(&/+3"+0)&*%):1#'%((%();8)=*"'*)."7"+0)#10/+"($()%G%1&)/+) %GD-"("&%)'#+&1#.)#+)&*%),/;1"'/&"#+)#,)7/1"#-()$/&%1"/.(4)H%(:"&%)(%7%1/.);1%/F&*1#-0*(6) &*%1%)%G"(&)#+.8)/)."$"&%3)+-$;%1)#,)$%&*#3(),#1)&*%):1%:/1/&"#+)#,)/37/+'%3)$/&%1"< /.(4))I#+(%D-%+&.86):1%'"(%.8)'#+&1# "+0)&*%)/1'*"&%'&-1%)/+3)'#$:#("&"#+)#,)"+#10/+"') $/&%1"/.()(&" )1%$/"+)%+"0$/&"'4)!"#.#0"'/.)#10/+"($()*/7%)&*%)%G&1/#13"+/18)/;"."&8)&#) ,/;1"'/&%)/)="3%)7/1"%&8)#,)"+#10/+"')$/&%1"/.()"+&#)'#$:.%G)$#1:*#.#0"%()&*/&)/1%)*"< %1/1'*"'/ 8)(&1-'&-1%3)#+)&*%)+/+#6)$"'1#)/+3)$/'1#('/.%()="&*)*"0*))3%."&84)E*%)+%G&) 0%+%1/&"#+)#,);"#.#0"'/ 8)"+(:"1%3)$/&%1"/.(),/;1"'/&"#+)$%&*#3()$-(&)31/=)"+(:"1/&"#+) ,1#$)'#$:.%G);"#.#0"'/.)(8(&%$(4 E*%)"+&%1/'&"#+);%&=%%+)'% (6)&"((-%()/+3);"#$/&%1"/.)(-1,/'%()/1%)&*%)*"0*."0*&()#,)&*%) ;##F)?C37/+'%()"+)!"#$"$%&"'(A4)5+)&*"()1%0/13)&*%)%ě)%'&)#,)+/+#(&1-'&-1%()/+3)+/+#< &#:#01/:*"%()/+3)&*%"1)%ě)%'&)#+)&*%)3%7%.#:$%+&)#,)/)+%=)0%+%1/&"#+)#,);"#$/&%1"/.() "+' 3"+0)/37/+'%3)$ &",-+'&"#+/.)('/ě)#.3(),#1)&"((-%)%+0"+%%1"+0)/1%)3"('-((%34)E*%) J)7# $%()'#+&/"+)/1&"'.%()&*/&)'#7%1)/)="3%)(:%'&1-$)#,)(-;K%'&)$/Ĵ)%1)(-'*)/()3"ě)%1%+&) /(:%'&()#,)&*%)3%7%.#:$%+&)#,)('/ě)#.3()/+3)'#/&"+0()="&*)%+*/+'%3):%1,#1$/+'%)/+3) ;"#/'&"7"&86)"+' 3"+0)"+7%(&"0/&"#+()#,)$/&%1"/.)(-1,/'%<'% )"+&%1/'&"#+(4 Anne George @+"7%1("&8)#,)5 "+#"()/&)I*"'/0#6 H%:/1&$%+&)#,)L1/.)!"#.#086 I*"'/0#6) @BC [...]... cyclohexene, 0.4 M; O2 bubbling; room temperature Entry [aldehyde], M [aldehyde ]1. 5, M1.5 [aldehyde]0.5, M0.5 1 2 3 4 5 0.80 1. 20 1. 60 2.00 2.40 0.72 1. 31 2.02 2.83 3.72 0.89 1. 10 1. 26 1. 41 1.55 R 10 3, mol L -1 min -1 1 .11 1. 64 2 .16 2.75 3. 41 a Temperature: 308 K; Concentration of cyclohexene: 0.4 M; Concentration of Mn(TPP)Cl, 0.4 10 -6 M; O2 bubbling Table 6 Effect of isobutyraldehyde concentration on the... 0.8 to 2.4 M resulted in an increase of the initial rate of epoxidized cyclohexene from 1. 11 10-3 to 3. 41 103 mol L -1 min -1 as shown in Table 6 18 Biomimetic Based Applications 4.5 3.5 3.0 -3 -1 R /10 mol L min -1 4.0 R=0.997 2.5 2.0 0.8 1. 0 1. 2 1. 4 1. 6 0.5 -2 1. 8 2.0 0.5 [Mn(TPP)Cl] /10 , M Fig 10 Effect of the concentration of Mn(TPP)Cl catalyst on the epoxidation rate in the presence of isobutyraldehyde... isobutyraldehyde and molecular oxygen: concentration of isobutyraldehyde, 2.0 M; concentration of Mn(TPP)Cl, 0.4 10 -6 M; O2 bubbling; room temperature Entry 1 2 3 4 5 [Mn(TPP)Cl], M 0.8 10 -4 1. 6 10 -4 2.4 10 -4 3.2 10 -4 4.0 10 -4 [Mn(TPP)Cl]0.5 10 2, M0.5 0.89 1. 26 1. 55 1. 79 2.00 R 10 3, mol L -1 min -1 1.98 2.94 3. 61 4. 01 4.47 a Temperature: 308 K; Concentration of isobutyraldehyde: 2.0 M; Concentration of cyclohexene:... substrate by means of this reaction field 26 Biomimetic Based Applications Catalyst CoTM4PyP/MT CoTM3PyP/MT CoTE3PyP/MT CoTE3PyP/MTb CoTE3PyP/MTc CoTE3PyP MT Time (h) 9 24 9 24 9 24 9 24 9 24 9 24 9 24 Yield (%) 1, 2-Epoxycyclohexane 17 .6 36.6 23.8 31. 1 41. 5 56 .1 48.8 56 .1 65.9 61. 0 31. 7 34 .1 17 .1 22.0 cyclohexanone 2.6 7.7 2.8 5 .1 4.9 9.8 7.3 12 .2 9.8 12 .2 4.9 4.9 2.4 4.9 Turnover number 25250 55375... ][cyclohexene] (13 ) Assuming that the system is in pseudo steady state, eqs 11 -13 become d[RC O]/dt = d[RCO2 ]/dt = d[RCO3 ]/dt = 0 (14 ) Summing eqs 11 , 12 and 13 , k0[RCHO][PorMnIII] = 2k3[RCO3 ]2 (15 ) In addition, eqs 16 and 17 can be deduced from eqs 7 and 8: d[MnIV=O]/dt = k4[PorMnII][RCO3H] - k5[MnIV=O][cyclohexene] (16 ) (17 ) d[RCO3H]/dt = k2[RCO3 ][RCHO] - k4[PorMnII][RCO3H] Based on pathways... reported.[88-90] Biomimetic Epoxidation of Olefins Catalyzed by Metalloporphyrins with Molecular Oxygen 19 3.5 2.5 2.0 -3 -1 R /10 mol L min -1 3.0 1. 5 R=0.999 1. 0 0.8 1. 0 1. 2 1. 4 0.5 1. 6 0.5 [isobutyraldehyde] , M Fig 11 Effect of isobutyraldehyde concentration on the epoxidation rate in the presence of molecular oxygen: concentration of cyclohexene, 0.4 M; concentration of Mn(TPP)Cl, 0.4 10 -6 M; O2 bubbling;... initial reaction rate Increasing the concentration of catalyst from 0.8 10 -4 to 4.0 10 -4 M increases the epoxidation rate from 1. 98 10 -3 to 4.47 10 -3 mol L -1 min -1 as shown in Table 5 Biomimetic Epoxidation of Olefins Catalyzed by Metalloporphyrins with Molecular Oxygen 17 2.9 -3 -1 R /10 mol L min -1 2.8 2.7 2.6 2.5 R=0.992 2.4 2.3 0 .1 0.2 0.3 0.4 [Cyclohexene]/M 0.5 Fig 9 Effect of cyclohexene concentration... porphyrinsviologen 6 4 -3 [Epoxide] /10 M 5 3 2 1 0 0 5 10 15 Reaction time/h 20 25 Fig 2 Time-dependence of the amount of produced epoxide in air-equilibrated acetonitrile suspension containing 1 10 -4 M Mn porphyrin, 5 10 -3 M 1- MeIm, 7.3 10 -2 M zinc powder, 2 10 -2 M benzoic acid and 0.47 M cyclohexene at 30oC Catalyst: MnTPPCl( ), MnPC2MV( ) and MnTPPCl +1 10 -4 M MV2+( ) Biomimetic Epoxidation of Olefins... Product Conv./% Yield/% 1 O 4 >99 96 2 O 5 >99 98 7 42 41 7 73 72 7 7 7 36 76 23 34 73 13 7 70 64 4 >99 98 8 96 94 4 93 92 6 96 72 3 O 4b 5 6b 7 O O 8b 9 10 11 12 a b O O O O Substrate (2 mmol), isobutylaldehyde (0. 011 mol), acetonitrile (6mL), O2 bubbling, rt (FeIIITPP)2O (1. 0 ppm) Table 9 Aerobic epoxidation of various alkenes catalyzed by (FeIIITPP)2O a 22 Biomimetic Based Applications with the steric... k6[RCO3 ][cyclohexene] (18 ) 16 Biomimetic Based Applications Through the pseudo steady state hypothesis for the Mn(IV) high-valent intermediate and RCO3H, eqs .16 , 17 and 18 can be summarized to get the generating rate of epoxide as: Re = k2(k6/2k3)0.5[RCHO ]1. 5[PorMnIII]0.5 + k6(k6/2k3)0.5[RCHO]0.5[PorMnIII]0.5[cyclohexene] (19 ) Then, eqs 19 can be simplified as: Re = K1[RCHO ]1. 5[PorMnIII]0.5 + K2[RCHO]0.5[PorMnIII]0.5[cyclohexene] . and Rumiana Dimova Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Contents VII Reinaldo de Bernardi, Arturo Forner-Cordero. oxygen and isobutyraldehyde a Biomimetic Based Applications 10 012 345 0 20 40 60 80 10 0 Conversion of cyclohexene (%) Time/h 10 000ppm 10 0ppm 10 ppm 1ppm 0.1ppm Fig. 4. Conversion rates. 4-6). Biomimetic Based Applications 8 CH 2 Cl 2 (50 mL), isobutyraldehyde (0.1mol), O 2 (1 atm), 10 h, r.t. (0 .1 ppm) 20 mmol O TON: 7 31, 470,480 isolated yield: 90% N N N N Mn TOF: 1. 2x10 6