3. ĐỘ PHỨCTẠPCỦATHUẬTTOÁN Một chương trình máy tính thường được cài đặt dựa trên một thuậttoán đúng để giải quyết bài toán hay vấn đề. Tuy nhiên, ngay cả khi thuậttoán đúng, chương trình vẫn có thể không sử dụng được đối với một dữ liệu đầu vào nào đó vì thời gian để cho ra kết quả là quá lâu hoặc sử dụng quá nhiều bộ nhớ (vượt quá khả năng đáp ứng của máy tính). Khi tiến hành phân tích thuậttoán nghĩa là chúng ta tìm ra một đánh giá về thời gian và "không gian" cần thiết để thực hiện thuật toán. Không gian ở đây được hiểu là các yêu cầu về bộ nhớ, thiết bị lưu trữ, của máy tính để thuậttoán có thể làm việc. Việc xem xét về không gian củathuậttoán phụ thuộc phần lớn vào cách tổ chức dữ liệu củathuật toán. Trong phần này, khi nói đến độphứctạpcủathuật toán, chúng ta chỉ đề cập đến những đánh giá về mặt thời gian mà thôi. Phân tích thuậttoán là một công việc rất khó khăn, đòi hỏi phải có những hiểu biết sâu sắc về thuậttoán và nhiều kiến thức toán học khác. Ðây là công việc mà không phải bất cứ người nào cũng làm được. Rất may mắn là các nhà toán học đã phân tích cho chúng ta độphứctạpcủa hầu hết các thuậttoán cơ sở (sắp xếp, tìm kiếm, các thuậttoán số học, ). Chính vì vậy, nhiệm vụ còn lại của chúng ta là hiểu được các khái niệm liên quan đến độ phứctạpcủathuật toán. Ðánh giá về thời gian củathuậttoán không phải là xác định thời gian tuyệt đối (chạy thuậttoán mất bao nhiêu giây, bao nhiêu phút, ) để thực hiện thuậttoán mà là xác định mối liên quan giữa dữ liệu đầu vào (input) củathuậttoán và chi phí (số thao tác, số phép tính cộng,trừ, nhân, chia, rút căn, ) để thực hiện thuật toán. Sở dĩ người ta không quan tâm đến thời gian tuyệt đối củathuậttoán vì yếu tố này phụ thuộc vào tốc độcủa máy tính, mà các máy tính khác nhau thì có tốc độ rất khác nhau. Một cách tổng quát, chi phí thực hiện thuậttoán là một hàm số phụ thuộc vào dữ liệu đầu vào :T = f(input) Tuy vậy, khi phân tích thuật toán, người ta thường chỉ chú ý đến mối liên quan giữa độ lớn của dữ liệu đầu vào và chi phí. Trong các thuật toán, độ lớn của dữ liệu đầu vào thường được thể hiện bằng một con số nguyên n. Chẳng hạn : sắp xếp n con số nguyên, tìm con số lớn nhất trong n số, tính điểm trung bình của n học sinh, Lúc này, người ta thể hiện chi phí thực hiện thuậttoán bằng một hàm số phụ thuộc vào n : T = f(n) Việc xây dựng một hàm T tổng quát như trên trong mọi trường hợp củathuậttoán là một việc rất khó khăn, nhiều lúc không thể thực hiện được. Chính vì vậy mà người ta chỉ xây dựng hàm T cho một số trường hợp đáng chú ý nhất củathuật toán, thường là trường hợp tốt nhất và xấu nhất. Chúng ta trở lại ví dụ về thuậttoán tìm hộp nặng nhất trong n hộp cho trước, nhưng lần này ta làm việc trên một thể hiện khác của vấn đề. Ðây là một thuậttoán tương đối đơn giản nên chúng ta có thể tiến hành phân tích được độphức tạp. Trước khi phân tích độphức tạp, ta nhắc lại đôi điều về thuậttoán này. Tìm số lớn nhất trong một dãy số Bài toán : Cho một dãy số a có n phần tử a 1 , a 2 , a n . Hãy xây dựng thuậttoán để tìm con số lớn nhất trong dãy a. Nhận xét 1. Nếu dãy chỉ có 1 phần tử thì phần tử đó là số lớn nhất. 2. Giả sử dãy có n phần tử và ta đã xác định được phần tử lớn nhất là amax . Nếu bổ sung thêm phần tử thứ an+1 vào dãy mà an+1 > amax thì an+1 chính là phần tử lớn nhất của dãy có n+1 phần tử. Trường hợp ngược lại, nghĩa là an+1 £ amax thì amax vẫn là phần tử lớn nhất của dãy có n+1 phần tử. Thuậttoán 1. Ghi nhớ a max = a 1 . 2. i = 2. 3. Nếu (i £ n) thì thực hiện các bước sau, ngược lại sang bước 5. 3.1. Nếu (a i > a max ) thì 3.1.1. Ghi nhớ a max = a i . 3.2. Tăng i lên 1. 4. Trở lại bước 3. 5. Phần tử lớn nhất dãy a chính là amax .Kết thúc. Trong thuậttoán trên, để đơn giản, ta chỉ xem chi phí là số lần so sánh ở bước 3.1 và số lần "ghi nhớ" trong bước 3.1.1. Trường hợp tốt nhất củathuậttoán này xảy ra khi con số lớn nhất nằm đầu dãy (a max = a 1 ); trường hợp xấu nhất xảy ra khi con số lớn nhất nằm ở cuối dãy (a max =a n ) và dãy được sắp xếp theo thứ tự tăng dần. Dựa theo sơ đồ khối củathuật toán, ta nhận thấy rằng, trong mọi trường hợp của bài toán, phép "ghi nhớ" ở bước 3.1 luôn được thực hiện và số lần thực hiện là n-1 (ứng với việc xét từ phần tử a 2 đến a n ). Ta gọi đây là chi phí cố định hoặc bất biến củathuật toán. Trường hợp tốt nhất : do a max = a 1 suy ra, với mọi i ³ 2, a i < a max . Do đó, điều kiện a i >a max ở bước 3.1 luôn không thỏa nên bước 3.1.1 không bao giờ được thực hiện. Như vậy, chi phí chung cho trường hợp này chính là chi phí cố định của bài toán. T = f(n) = n-1 Trường hợp xấu nhất : Ta có : với mọi i>1, a i -1< a i (do định nghĩa dãy được sắp xếp tăng dần) nên điều kiện a i >a max ở bước 3.1 luôn thỏa, bước 3.1.1 luôn được thực hiện. Như vậy, ngoài chi phí chung là n-1 phép so sánh, ta cần phải dùng thêm n-1 phép "ghi nhớ" ở bước 3.1.1. Như vậy, tổng chi phí của trường hợp này là T = f(n) = 2(n-1)=2n-2 Ðịnh nghĩa Cho hai hàm f và g có miền xác định trong tập số tự nhiên . Ta viết f(n) = O(g(n)) và nói f(n) có cấp cao nhất là g(n) khi tồn tại hằng số C và k sao cho | f(n) | £ C.g(n) với mọi n > k Tuy chi phí củathuậttoán trong trường hợp tốt nhất và xấu nhất có thể nói lên nhiều điều nhưng vẫn chưa đưa ra được một hình dung tốt nhất về độ phứctạpcủathuật toán. Ðể có thể hình dung chính xác về độ phứctạpcủathuật toán, ta xét đến một yếu tố khác là độ tăng của chi phí khi độ lớn n của dữ liệu đầu vào tăng. Theo định nghĩa ở trên, ta nhận thấy chi phí thấp nhất và lớn nhất củathuậttoán tìm số lớn nhất đều bị chặn bởi O(n) (tồn tại hằng số C=10, k=1 để 2n-2 < 10n với mọi n>1). Một cách tổng quát, nếu hàm chi phí củathuậttoán (xét trong một trường hợp nào đó) bị chặn bởi O(f(n)) thì ta nói rằng thuậttoán có độphứctạp là O(f(n)) trong trường hợp đó. Như vậy, thuậttoán tìm số lớn nhất có độphứctạp trong trường hợp tốt nhất và xấu nhất đều là O(n). Người ta gọi các thuậttoán có độphứctạp O(n) là các thuậttoán có độphứctạp tuyến tính. Sau đây là một số "thước đo" độ phứctạpcủathuậttoán được sử dụng rộng rãi. Các độphứctạp được sắp xếp theo thứ tự tăng dần. Nghĩa là một bài toán có độphứctạp O(nk) sẽ phứctạp hơn bài toán có độphứctạp O(n) hoặc O(logan). . thuật toán có độ phức tạp O(n) là các thuật toán có độ phức tạp tuyến tính. Sau đây là một số "thước đo" độ phức tạp của thuật toán được sử dụng rộng rãi. Các độ phức tạp được sắp. trữ, của máy tính để thuật toán có thể làm việc. Việc xem xét về không gian của thuật toán phụ thuộc phần lớn vào cách tổ chức dữ liệu của thuật toán. Trong phần này, khi nói đến độ phức tạp của. kiếm, các thuật toán số học, ). Chính vì vậy, nhiệm vụ còn lại của chúng ta là hiểu được các khái niệm liên quan đến độ phức tạp của thuật toán. Ðánh giá về thời gian của thuật toán không