Tính chất nhiệt động của chất lưu 1 TÍNH CHẤT NHIỆT ĐỘNG CỦA CHẤT LƯU Biên soạn: Lê Quang Nguyên Nếu biết các thế nhiệt động F và G cùng với phương trình trạng thái và một trong các hệ số nhiệt của một chất lưu, chúng ta sẽ biết được tất cả các hàm trạng thái còn lại (S, U, H) của chất lưu đó. Bài này sẽ giới thiệu các hệ thức nhiệt động lực học cho phép chúng ta làm điều đó. 1. CÁC HỆ SỐ NHIỆT 1.1 NHIỆT DÃN NỞ ĐẲNG NHIỆT Nếu chọn các biến số trạng thái là T và V ta có thể viết độ biến thiên của entropy và nội năng của chất lưu trong một quá trình vi phân như sau: dV V S dT T S dS TV (1.1.1) dV V U dTCdV V U dT T U dU T V TV (1.1.2) Trong đó V V T U C là nhiệt dung đẳng tích của chất lưu. Từ đồng nhất thức PdVTdSdU và (1.1.2) ta có thể viết vi phân của entropy như sau: dVP V U TT dT CdS T V 1 (1.1.3) Đồng nhất hai hệ thức (1.1.1) và (1.1.3) ta thu được: V V T S TC (1.1.4) P V U V S Tl TT V (1.1.5) Trong đó chúng ta đã định nghĩa đại lượng l V , gọi là nhiệt dãn nở đẳng nhiệt của chất lưu đang xét. Sở dĩ l V được gọi như vậy là vì theo định nghĩa trên, lượng nhiệt dQ mà chất lưu hấp thu trong một quá trình đẳng nhiệt để làm cho thể tích dãn nở một lượng dV là dQ = TdS = l V dV. Người ta cũng gọi C V và l V là các hệ số nhiệt của chất lưu. 1.2 NHIỆT NÉN ĐẲNG NHIỆT Nếu chọn các biến số trạng thái là T và P ta có thể viết độ biến thiên của entropy và enthalpy của chất lưu trong một quá trình vi phân như sau: dP P S dT T S dS TP (1.2.1) dP P H dTCdP P H dT T H dH T P TP (1.2.2) Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. Tính chất nhiệt động của chất lưu 2 Trong đó P P T H C là nhiệt dung đẳng áp của chất lưu. Từ đồng nhất thức VdPTdSdH và (1.2.2) ta có thể viết vi phân của entropy như sau: dPV P H TT dT CdS T P 1 (1.2.3) Đồng nhất hai hệ thức (1.2.1) và (1.2.3) ta thu được: P P T S TC (1.2.4) V P H P S Tl TT P (1.2.5) Trong đó chúng ta đã định nghĩa đại lượng l P , gọi là nhiệt nén đẳng nhiệt của chất lưu đang xét. Sở dĩ l P được gọi như vậy là vì theo định nghĩa trên, lượng nhiệt dQ mà chất lưu hấp thu trong một quá trình đẳng nhiệt để làm cho áp suất tăng một lượng dP là dQ = TdS = l P dP. Người ta cũng gọi C P và l P là các hệ số nhiệt của chất lưu. 2. VI PHÂN CỦA CÁC HÀM TRẠNG THÁI Dùng các kết quả trên chúng ta có thể viết biểu thức vi phân của các hàm trạng thái U, S theo T, V: dVPldTCdU VV (2.1) T dV l T dT CdS VV (2.2) Ngoài ra, vi phân của F cũng được biểu diễn qua T, V: PdVSdTdF (2.3) Tương tự như vậy chúng ta có thể viết biểu thức vi phân của các hàm trạng thái H, S theo T, P: dPVldTCdH PP (2.4) T dP l T dT CdS PP (2.5) Ngoài ra, vi phân của G cũng được biểu diễn qua T, P: VdPSdTdG (2.6) 3. CÁC HỆ THỨC CLAPEYRON 3.1 BIẾN SỐ T, V Vì F là một hàm trạng thái nên: T V V T T F VV F T (3.1.1) Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. Tính chất nhiệt động của chất lưu 3 Từ PdVSdTdF ta có S T F V và P V F T . Do đó hệ thức (3.1.1) có thể viết lại như sau: TV V S T P (3.1.3) Nhờ hệ thức trên ta có thể biểu diễn nhiệt dãn nở đẳng nhiệt l V thông qua phương trình trạng thái f(P, V, T) = 0: V V T P Tl (3.1.4) Entropy S cũng là một hàm trạng thái, do đó ta có: T V V T T S VV S T (3.1.5) Vì TV V S T P và V V T S TC nên hệ thức trên trở thành: T V V V T C VT P T (3.1.6) Qua đó ta thu được một hệ thức nữa giữa một hệ số nhiệt với phương trình trạng thái: V T V T P T V C 2 2 (3.1.7) (3.1.4) và (3.1.7) là các hệ thức Clapeyron theo biến số T, V. 3.2 BIẾN SỐ T, P Vì G là một hàm trạng thái nên: T P P T T G PP G T (3.2.1) Từ VdPSdTdG ta có S T G P và V P G T . Do đó hệ thức (3.2.1) có thể viết lại như sau: TP P S T V (3.2.3) Nhờ hệ thức trên ta có thể biểu diễn nhiệt nén đẳng nhiệt l P thông qua phương trình trạng thái f(P, V, T) = 0: P P T V Tl (3.2.4) Entropy S cũng là một hàm trạng thái, do đó ta có: T P P T T S PP S T (3.2.5) Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. Tính chất nhiệt động của chất lưu 4 Vì TP P S T V và P P T S TC nên hệ thức trên trở thành: T P P P T C PT V T (3.2.6) Qua đó ta thu được một hệ thức nữa giữa một hệ số nhiệt với phương trình trạng thái: P T P T V T P C 2 2 (3.2.7) (3.2.4) và (3.2.7) là các hệ thức Clapeyron theo biến số T, V. 4. HỆ THỨC MAYER Trong phần 2 ta đã thấy vi phân của entropy theo các biến số T, V và T, P: T dV l T dT CdS VV (4.1) T dP l T dT CdS PP (4.2) Các biến số V, T, P lại liên hệ với nhau qua phương trình trạng thái f(P, V, T) = 0, vì thế ta có thể viết vi phân của V theo T và P: dP P V dT T V dV TP (4.3) Thay (4.3) vào (4.1) ta có: T dP P V l T dT T V lCdS T V P VV (4.4) Đồng nhất (4.2) và (4.4) và dùng hệ thức Clapeyron (3.1.4) cho l V ta thu được hệ thức Mayer: VP VP T P T V TCC (4.5) Đối với một mol khí lý tưởng, từ (4.5) chúng ta tìm lại được hệ thức quen thuộc C P – C V = R 5. VÍ DỤ ÁP DỤNG 5.1 SỰ DÃN JOULEGAY-LUSSAC Sự dãn Joule–Gay-Lussac là sự dãn đoạn nhiệt trong chân không, do đó nhiệt dQ và công dA mà chất lưu trao đổi với môi trường đều bằng không, suy ra nội năng được bảo toàn: dU = 0 Mặt khác chúng ta đã biết (hệ thức (2.1)): dVPldTCdU VV Với: V V T P Tl Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. Tính chất nhiệt động của chất lưu 5 Suy ra: 0 dVP T P TdTC V V Vậy độ biến thiên nhiệt độ của chất lưu trong quá trình này được xác định bởi: dVT C P dT V 1 Trong đó là hệ số nén đẳng tích của chất lưu: V T P P 1 5.2 SỰ DÃN JOULE-THOMSON Sự dãn Joule-Thomson là một quá trình có enthalpy không đổi: dH = 0 Mặt khác, theo (2.4) ta có: dPVldTCdH PP Trong đó: P P T V Tl Suy ra: 0 dP T V TVdTC P P Vậy độ biến thiên nhiệt độ của chất lưu trong quá trình này được xác định bởi: dPT C V dT P 1 Trong đó là hệ số dãn đẳng áp của chất lưu: V T P P 1 5.3 HÀM ĐẶC TRƯNG G(T,P) Năng lượng Gibbs của một khí lý tưởng đơn nguyên tử có dạng: 00 00 0 ln 5 2 ln 2 5 TSH P P T T T TTTnRG Trong đó H 0 và S 0 là enthalpy và entropy của khí ở nhiệt độ T 0 và áp suất P 0 . Lấy vi phân của G: P dP nRTS P P nR T T nRdTdG 0 00 lnln 2 5 Mặt khác chúng ta có đồng nhất thức: VdPSdTdG Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. Tính chất nhiệt động của chất lưu 6 Suy ra: Phương trình trạng thái khí lý tưởng, P nRT V . Entropy của khí , 0 00 lnln 2 5 S P P nR T T nRS . Enthalpy nRTHTSGH 2 5 0 Tóm lại, từ thế nhiệt động G chúng ta đã tìm được phương trình trạng thái và tất cả các hàm trạng thái, do đó xác định được tất cả các tính chất nhiệt động của hệ đang xét. Đây chỉ là một trường hợp riêng, nhưng cách làm nêu trên cũng có thể áp dụng cho một chất lưu bất kỳ. Ngoài ra, từ thế nhiệt động F ta cũng có thể làm tương tự như vậy. Do đó, G và F còn được gọi là các hàm đặc trưng của hệ. TÀI LIỆU THAM KHẢO [1] Thermodynamique, 1 re année MPSI-PCSI-PTSI, Jean- Marie Brebec et al, Hachette Supérieur. [2] Thermodynamique, 2 de année PC-PC * , PSI-PSI * , Jean- Marie Brebec et al, Hachette Supérieur. Generated by Foxit PDF Creator © Foxit Software http://www.foxitsoftware.com For evaluation only. . Tính chất nhiệt động của chất lưu 1 TÍNH CHẤT NHIỆT ĐỘNG CỦA CHẤT LƯU Biên soạn: Lê Quang Nguyên Nếu biết các thế nhiệt động F và G cùng với phương trình. only. Tính chất nhiệt động của chất lưu 2 Trong đó P P T H C là nhiệt dung đẳng áp của chất lưu. Từ đồng nhất thức VdPTdSdH và (1.2.2) ta có thể viết vi phân của entropy. Software http://www.foxitsoftware.com For evaluation only. Tính chất nhiệt động của chất lưu 5 Suy ra: 0 dVP T P TdTC V V Vậy độ biến thiên nhiệt độ của chất lưu trong quá trình này được