1. Trang chủ
  2. » Luận Văn - Báo Cáo

Skkn giải pháp giúp học sinh phát huy khả năng giải bài toán về nghiệm của đa thức

58 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 58
Dung lượng 14,61 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO NINH BÌNH TRƯỜNG THPT CHUYÊN LƯƠNG VĂN TỤY SÁNG KIẾN GIẢI PHÁP GIÚP HỌC SINH PHÁT HUY KHẢ NĂNG GIẢI BÀI TOÁN VỀ NGHIỆM CỦA ĐA THỨC Người thực hiện: NGÔ THỊ HOA Chức vụ: Giáo viên SKKN mơn: Tốn NINH BÌNH-THÁNG NĂM 2019 skkn I MỞ ĐẦU 1.1 Lý chọn đề tài Mỗi nội dung chương trình chuyên tốn phổ thơng có vai trị quan trọng việc hình thành phát triển tư học sinh Trong trình giảng dạy, giáo viên phải đặt đích giúp học sinh nắm kiến thức bản, hình thành phương pháp, kỹ năng, kỹ xảo, từ tạo thái độ động học tập đắn Thực tế dạy học cho thấy cịn có nhiều vấn đề cần phải giải học sinh học nội dung nghiệm đa thức cịn yếu, chưa hình thành kỹ năng, kỹ xảo q trình giải tốn Đặc biệt, năm gần đây, đề thi học sinh giỏi cấp tỉnh, cấp Quốc gia mật độ xuất toán nghiệm đa thức xuất ngày nhiều Từ thực tiễn giảng dạy bồi dưỡng học sinh giỏi nhiều năm, với kinh nghiệm q trình giảng dạy Tơi tổng hợp, khai thác nhiều chuyên đề nội dung Đa thức Trong SKKN xin chia sẻ : ‘‘Giải pháp giúp học sinh phát huy khả giải toán nghiệm đa thức ” Đây nội dung quan trọng, hay chương trình giải tíchs lớp chun Tốn nên có nhiều tài liệu, sách viết nhiều thầy cô giáo học sinh say sưa nghiên cứu học tập Tuy nhiên việc đưa hướng tiếp cận quy lạ quen toán nhiều sách tham khảo chưa đáp ứng cho người đọc Chính việc đưa sáng kiến cần thiết, làm em hiểu sâu tốn u thích chủ đề Đa thức 1.2 Mục đích nghiên cứu Qua nội dung đề tài mong muốn cung cấp cho người đọc nắm cách tiếp cận toán, quy lạ quen, đồng thời giúp cho học sinh số kiến thức, phương pháp kỹ để học sinh giải tốn tích phân, hình thành cho em thói quen tìm tịi tích lũy rèn luyện tư sáng tạo, giải toán đời sống xã hội, chuẩn bị tốt đạt kết cao kỳ thi THPT Quốc gia 1.3 Đối tượng nghiên cứu Chúng tập trung nghiên cứu số tính chất tích phân, nghiên cứu câu hỏi tích phân dạng trắc nghiệm khách quan, nghiên cứu ứng dụng tích phân để tính diện tích hình phẳng, thể tích khối trịn xoay vận dụng tốn thực tế đời sống xã hội 1.4 Phương pháp nghiên cứu Trong phạm vi đề tài, sử dụng kết hợp phương pháp như: phương pháp thống kê – phân loại; phương pháp phân tích – tổng hợp- đánh giá; phương pháp vấn đáp - gợi mở, nêu ví dụ; phương pháp diễn giải số phương pháp khác phương pháp quy lạ quen, sử dụng máy tính để hổ trợ tìm đáp án câu hởi trắc nghiệm khách quan skkn II NỘI DUNG SÁNG KIẾN 2.1 Cơ sở lí luận sáng kiến Vấn đề nghiên cứu dựa sở nội dung đa thức tài liệu chuyên toán Khi giải tập toán, người học phải trang bị kỹ suy luận, liên hệ cũ mới, toán làm toán Các tiết dạy tập phải thiết kế theo hệ thống chuẩn bị sẵn từ dễ đến khó nhằm phát triển tư cho học sinh trình giảng dạy, phát huy tính tích cực học sinh Hệ thống tập giúp học sinh tiếp cận nắm bắt kiến thức nhất, phát triển khả tư duy, khả vận dụng kiến thức học cách linh hoạt vào giải tốn trình bày lời giải Từ học sinh có hứng thú động học tập tốt Trong q trình giảng dạy nội dung Đa thức, tơi thấy kỹ giải toán nghiệm Đa thức học sinh cịn yếu Do cần phải cho học sinh tiếp cận toán cách dễ dàng, quy lạ quen, thiết kế trình tự giảng hợp lý giảm bớt khó khăn giúp học sinh nắm kiến thức bản, hình thành phương pháp, kĩ năng, kĩ xảo lĩnh hội lĩnh kiến thức mớitừ đạt kết cao kỳ thi THPT Quốc gia, thi học sinh giỏi cấp 2.2 Thực trạng vấn đề trước áp dụng sáng kiến Nội dung Đa thức phần kiến thức tương đối khó rộng với học sinh Học sinh nhanh quên không vận dụng kiến thức học vào giải toán Trong kỳ thi HSG Quốc gia năm 2017, nội dung đưa câu ngày thi 1.Với tình hình để giúp học sinh định hướng tốt trình giải toán liên quan đến nghiệm đa thức, người giáo viên cần tạo cho học sinh thói quen tiếp cận toán, khai thác yếu đặc trưng tốn để tìm lời giải Trong việc hình thành cho học sinh kỹ quy lạ quen, kỹ kỹ đọc hiểu toán nâng cao Chính đề tài đưa giúp giáo viên hướng dẫn toán Đa thức cho học sinh với cách tiếp cận dễ hơn, giúp học sinh có điều kiện hồn thiện phương pháp rèn luyện tư sáng tạo thân, chuẩn bị tốt cho kỳ thi HSG Quốc gia Vậy mong muốn đồng nghiệp học sinh ngày vận dụng tốt kiến thức nghiệm đa thức để đưa giải pháp nhằm giải toán liên qua đến nghiệm đa thức cách xác nhanh 2.3 Các biện pháp thực 2.3.1 Một số kiến thức cần nhớ I KIẾN THỨC CƠ BẢN Định nghĩa phép toán Định nghĩa : Cho hàm số số thực Ta gọi đa thức với cho : ( số) tồn skkn hay dạng rút gọn: Các số tự Đặc biệt Với gọi hệ số, gọi hệ số cao nhất, gọi hệ số đa thức gọi đa thức chuẩn tắc hay đa thức mo-nic gọi bậc đa thức Quy ước với , ký hiệu , đặc biệt: Đa thức tập số Với tập hợp số, ký hiệu : Cho đa thức  Nếu hệ số ký hiệu  Nếu hệ số ký hiệu  Nếu hệ số Các phép tốn ký hiệu Cho hai đa thức: Khi    với quy ước cách viết hình thức: Từ với đa thức với hệ số thực , skkn C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Định nghĩa Ta nói đa thức với hệ số nguyên bất khả quy , khơng phân tích thành tích hai đa thức với hệ số ngun có bậc lớn ( viết nói đa thức bất khả quy có nghĩa nói đa thức bất khả quy ) Các định lý Định lý 2.1.(Định lý bản) Mọi đa thức bậc có khơng q nghiệm thực Từ điểm, Định lý 2.2( Định lý phép chi có dư) Cho Khi tồn đa thức : Đặc biệt, ta nói cho chia hết cho , ký hiệu hay Định lý 2.3( Định lý Bezout 1) Nếu nghiệm đa thức Từ suy với Định lý 2.4( Định lý Bezout 2) Hai đa thức hai số nguyên phân biệt nguyên tố tồn đa thức cho Chứng minh Giả sử tồn thỏa mãn điều kiện Đặt Ta chứng minh tồn đa thức thỏa mãn Ta chứng minh quy nạp theo Nếu điều cần chứng minh hiển nhiên Giả sử điều cần chứng minh với Xét hai đa thức có Khơng tính tổng qt , giả sử thương dư Thực phép chia cho Không thể xảy trường hợp ( vơ lý) skkn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Vì với theo giat thiết quy nạp , tồn đa thức Khi cho Thay Ta , tương đương với Do định lý với : Theo nguyên lý quy nạp, định lý Bezout chứng minh Định lý 2.5( Sự phân tích tiêu chuẩn) Mọi đa thức với hệ số thực biểu diễn dạng: 1.2 Nghiệm đa thức Định nghĩa Số gọi nghiệm đa thức Định lý Từ hệ ta có: a nghiệm Định lý Nếu nghiệm đa thức nghiệm đa thức Định nghĩa Cho đa thức Ta nói số a nghiệm bội m Định lý (Định lí đại số) Trong , đa thức bậc n có đầy đủ n nghiệm phức (kể bội) Hệ Trong , đa thức bậc n có khơng q n nghiệm thực (kể bội) Định lý Cho đa thức Nếu nghiệm phức liên hợp Định lý nghiệm skkn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an i) Cho bậc n, hệ số cao a có n nghiệm phức Khi ii) Cho bậc n, hệ số cao a có tất nghiệm phức tương ứng Khi với bội , iii) Cho đa thức có nghiệm thực với bội tương ứng Khi , với Từ định lý suy có nghiệm phức , có nghiệm phức , với Lặp lại trình cách xét nghiệm phức ta có định lí Định lý Trong , đa thức phân tích dạng tích nhân tử bậc nhân tử bậc hai với biệt thức âm Định lý i) Nếu đa thức với có nhiều n nghiệm (kể bội) đa thức ii) Nếu hai đa thức có bậc không vượt n, lại nhiều n giá trị khác biến x Hệ Cho đa thức với hệ số thực Khi i) Nếu hàm hàm số chẵn tất hệ số lũy thừa bậc lẻ ii) Nếu hàm hàm số lẻ tất hệ số lũy thừa bậc chẵn Định lý (Định lý Viet) Trong C, đa thức nghiệm có n skkn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Định lý (Định lí Viét đảo) Nếu có n số phức thỏa mãn n nghiệm đa thức Định lý 10 Nếu Với nghiệm Chứng minh: Đặt Nếu BĐT Nếu Từ ta có điều phải chứng minh skkn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Định lý 11 Cho đa thức Khi (phân số tối giản) nghiệm Trong trường họp đặc biệt hệ số cao dẫn đến nghiệm hữu tỉ đa thức nghiệm nguyên nên thu hệ Hệ Cho nghiệm thực nguyên vô tỉ 2.3.2 Các giải pháp b) Giải pháp 1: Sử dụng số tính chất giải tích đa thức Định lý i) Mọi đa thức bậc lẻ ln có nghiệm thực ii) Nếu đa thức bậc n mà khơng có nghiệm thực n phải số chẵn Định lý (Định lý Lagrange) Nếu hàm liên tục đoạn khoảng tồn cho , có đạo hàm Định lý (Định lý Roll) Cho đa thức P  x  với hệ số thực hai số thực a, b ( a  b ) Khi đó, P  a   P  b  tồn c   a; b  cho P '  c   Hệ Cho đa thức P  x  với hệ số thực có n nghiệm thực phân biệt đa  nk   x  có n  k nghiệm thực phân biệt thức đạo hàm cấp k tức đa thức P Ví dụ (VMO 2017) Trong mặt phẳng (Oxy), cho (C) đồ thị hàm số (C) ba điểm phân biệt có hồnh độ Một đường thẳng d thay đổi cho d cắt Chứng minh Bài giải Nhận xét : dễ thấy đường thẳng d đường thẳng có hệ số góc Giả sử , xét phương trình hồnh độ giao điểm d (C) : skkn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn C.33.44.55.54.78.65.5.43.22.2.4 22.Tai lieu Luan 66.55.77.99 van Luan an.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.C.33.44.55.54.78.655.43.22.2.4.55.22 Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an C.vT.Bg.Jy.Lj.Tai lieu Luan vT.Bg.Jy.Lj van Luan an.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj Do an.Tai lieu Luan van Luan an Do an.Tai lieu Luan van Luan an Do an Để d cắt (C) ba điểm phân biệt Đặt (1) có ba nghiệm phân biệt , theo giả thiết , phương trình Áp dụng định lý Vi- et ta có Mặt khác, xét hàm số , để phương trình (1) có ba nghiệm phân biệt khi tích giá trị cực đại giá trị cực tiểu nhỏ Điều tương đương với Hay Do giả thiết cần chứng minh tương đương với Bài toán chứng minh Ví dụ Cho số thực Chứng minh đa thức : có nghiệm thực thuộc khoảng , đa thức : có nghiệm thực Bài giải Gọi nghiệm phương trình : Nghĩa là : Xét hàm số : Khi đó : 10 skkn Stt.010.Mssv.BKD002ac.email.ninhd.vT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.LjvT.Bg.Jy.Lj.dtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn Stt.010.Mssv.BKD002ac.email.ninhd 77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77.77.99.44.45.67.22.55.77.C.37.99.44.45.67.22.55.77t@edu.gmail.com.vn.bkc19134.hmu.edu.vn.Stt.010.Mssv.BKD002ac.email.ninhddtt@edu.gmail.com.vn.bkc19134.hmu.edu.vn

Ngày đăng: 04/08/2023, 09:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w