1. Trang chủ
  2. » Luận Văn - Báo Cáo

Quy hoạch toàn phương

100 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 545,04 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: QUY HOẠCH TOÀN PHƯƠNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Luận văn đề cập tới việc khảo sát tồn nghiệm, thuật giải lặp cấp hai, khai triển tiệm cận nghiệm theo tham số bé cho hệ phương trình hàm phi tuyến = [a,b] khoảng khơng bị chặn IR Nội dung luận văn nằm chương 3, 4, Trong chương 3, chứng minh tồn tại, nghiệm hệ phương trình hàm cầu đóng C(;IRn ).Kết thu chứa đựng kết C.Q Wu, Q.W Xuan, D.Y Zhu khảo sát trường hợp = [-b,b], m = n = 2, ank = Sijk nhị 491 2 2.1 Một số đặc biệt hóa Jacobson vành Biểu diễn ∆(R) tính chất Trong mục này, khảo sát tập ∆(R) =: {r ∈ R|r+U (R) ⊆ U (R)} vành R Tập vành có quan hệ chặt chẽ với Jacobson R Ta ∆(R) vành Jacobson lớn R đóng với phép tốn nhân phần tử khả nghịch R Các tính chất ∆ cấu trúc vành nghiên cứu, trình bày số họ vành mà ∆(R) = J(R) Các phương pháp cấu trúc vành với ∆(R) ̸= J(R) mô tả Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề 9, ∆(T ) iđêan T Theo (4) Bổ đề 9, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ∆(R) [ = ∆(R), nghĩa ∆ Hệ Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý ∆(R) = J(R) R thỏa mãn điều kiện sau (1) R/J(R) đẳng cấu với phép nhân vành ma trận division rings (2) R vành nửa địa phương (3) R clear ring thỏa ∈ U (R) (4) R U J -vành, nghĩa U (R) = + J(R) (5) R có stable range (6) R = F G nhóm đại số trường F Bổ đề Giả sử G nhóm R Khi G đóng với phép nhân phần tử khả nghịch đóng với phép nhân phần tử quasi-invertible R Định lý Giả sử R vành có đơn vị G nhóm phép cộng R Khi điều kiện sau tương đương (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 2.2 Mở rộng toán tử ∆ cho vành khơng có đơn vị Bổ đề Cho R vành không thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) khơng chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ Cho R vành có unit regular, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R)+J(R[x]) Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề ?? ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy R∼ = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần  tử khác không  khả nghịch Lấy bất 0 − a     0 0    kỳ a ∈ R, a = ̸ 0, ta có X =      ∈ Mn (R) X =    0 Do M n (R) ∆U -vành,ta lấy X ∈ ∆(Mn (R)) Lấy phần  tử 0 1 0 0  0        0  U =  ∈ Mn (R) Khi In −U X =           0 0 0 khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể Tiếp theo, ta chứng minh R ∼ = F2 Lấy a ∈ R, a ̸= khả nghịch  0 0   0     a a ̸= Lấy  a 0    X=     0 a 0   0  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)    0 a   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng 36 Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề ?? ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H |CG (x)| + x∈K = |K||G| + X |CG (x)| x∈H\K |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do p(|H| − |K|) ⩽ X |CG (x)| ⩽ (|H| − |K|) x∈H\K |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hốn tương đối nhóm nhóm giao hốn Kết sau cho ta cận cho độ giao hoán tương đối nhóm một nhóm khơng giao hốn Mệnh đề 14 Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = X |CG (x)| = |H||G| = |H||G| |H||G| x∈H 37 (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý ?? ta |H| + |H| |Z(G) ∩ H| + |H| Pr(H, G) ⩽ ⩽ = |H| |H| Giả sử H không nhóm giao hốn Khi theo Mệnh đề 28 ta có Pr(H) ⩽ Do đó, theo Định lý ?? ta có Pr(H, G) ⩽ Pr(H) ⩽ Vậy ta có điều phải chứng minh Kết sau mơ tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề ?? Mệnh đề 15 Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H khơng giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý ?? ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề ?? (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| thiết Do = 2, H/(Z(G) ∩ H) ∼ = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh 38 (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| H/(Z(G) ∩ H) ∼ = Z2 × Z2 13 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề 16 Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề 17 Cho R ∆U -vành Khi 39 (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề ?? ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy ∼ R = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên 40 (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý 19 Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần  tử khác không  khả nghịch Lấy bất 0 − a     0 0    kỳ a ∈ R, a = ̸ 0, ta có X =      ∈ Mn (R) X =    0 Do M n (R) ∆U -vành,ta lấy X ∈ ∆(Mn (R)) Lấy phần  tử khả nghịch  0 1 0 0 0  0           0  0 U =  ∈ Mn (R) Khi In −U X =               0 0 0 a khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể ∼ Tiếp  minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy  theo, ta chứng a 0 0 a 0      0 X=  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)       0 a 41   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết,  ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề 18 Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) 42  r m r  : r ∈ R m ∈ M Mở rộng tầm thường T (R, M ) đẳng cấu với vành   R M vành ma trận × Hơn nữa, kiểm tra R T (R, R) ∼ = R[x]/(x2 ) Theo Mệnh đề ??, có tập phần tử khả nghịch mở rộng tầm thường T (R, M ) T (U (R), M ), ∆(T (R, M )) = T (∆(R), M )   A M A, B vành, Morita context gồm thành phần N B B NA song mơđun, tồn tích context M ×N → A  A M N × M → B với (ω, z) = ωz (z, ω) = zω , thỏa mãn vành A MB N B kết hợp với phép  toán trên ma trận A M Morita context gọi tầm thường tích context N B tầm thường, nghĩa M N = N M = (xem [?], trang 1993) Ta có   A M N B A M N B  ∼ = T (A × B, M ⊕ N )  Morita context tầm thường theo [?] Định lý 20 Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành   u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy  a ¯= 0   + a m a  ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy  43 Hệ 19 Giả sử  M là(R, S) song mơđun Khi vành ma trận R M tam giác dạng ∆U -vành R S S ∆U -vành Hệ 20 R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ 14 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ Ví dụ, cho ϱ(x) :=   exp  |x| −  |x| < |x| ≥ 44 n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề 19 (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z fh (x) := (ϱ ∗ f )(x) := ϱh (x − y)f (y)dy, ∀x ∈ Rn Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) 45 Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z R∋ gx (y)dy = ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn Rn Rn (ii) cách thay đổi biến Z (f ∗ ϱ)(x) = f (x − y)ϱ(y)dy Rn (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (32) Chú ý Z (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (33) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (34) Bởi vì, ϱ ∈ Lip(Rn ), theo (??), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N (35) Từ (??), (??) định lý tính hội tụ bị trội, theo (??) Nhận xét Ký hiệu ∗ tích chập hai hàm khơng gian Rn Lưu ý, kết mệnh đề ?? giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ 46 C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý 21 (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý 22 (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (??), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (??) (36) 47 Cho tập compact K ∈ Ω, định nghĩa g : Rn → R   f (x) x ∈ K, f (x) ̸= g(x) := |f (x)|  ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý ?? (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω với h > h Do đó, theo định lý 43 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (37) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý ?? (iv) (68), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý 23 (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập p mở Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, 48 định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý ?? (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (38) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω (39) Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, để đơn giản, giả sử rh = h Khi đó, theo định lý ?? (i), (ii) (??), (??), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (40) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý ?? (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (??), ta có điều phải chứng minh 15 Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f g= = Di f Ω, = Di f hiểu lớp đạo hàm ∂xi ∂xi riêng thứ i f i Ω (∃ 49 (i)  C (Ω) :=  ∂f f ∈ C (Ω) : ∃ ∈ C0 (Ω), ∀i = 1, , n ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý 24 Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) khơng gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ không không gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (41) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập Cho (E, ∥.∥E ) (F, ∥.∥F ) khơng gian Banach Cho E × F với chuẩn ∥(x, y)∥F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥F ) khơng gian Banach 50 Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hoàn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (42) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (43) Theo (??), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (??) Bài tập Chỉ (C1 (Ω), ∥.∥C1 ) không gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) khơng gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) không không gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý 25 Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 );

Ngày đăng: 05/07/2023, 21:37