1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chỉnh hóa nghiệm một bài toán đàn hồi ba chiều

109 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 109
Dung lượng 591,44 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: CHỈNH HĨA NGHIỆM MỘT BÀI TỐN ĐÀN HỒI BA CHIỀU LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Mục đích luận văn nhằm đưa định nghĩa tìm hiểu số tính chất không gian mêtric suy rộng Baire mà đặc biệt tính chất liên quan đến định lí điểm bất động ứng dụng Do đó, nội dung luận văn chia làm chương Chương trình bày khái niệm khơng gian độ phức tạp, thuật tốn Chia để trị, phương trình đệ quy tìm hiểu tính chất khơng gian mêtric, không gian tựa mêtric; tạo điều kiện thuận lợi cho việc tìm hiểu vấn đề liên quan chương Chương trình bày khái niệm, tính chất khơng gian p-mêtric khơng gian mêtric suy rộng Baire Chương trình bày ứng dụng khơng gian mêtric suy rộng Baire vào phân tích tiệm cận độ phức tạp thuật toán 617 2 ĐỊNH LÝ ROLLE Cơ sở định lý Rolle dựa hai định lý Weierstrass Fermat Định lý Weierstrass khẳng định hàm số f liên tục đoạn [a, b] bị chặn tồn giá trị lớn nhất, giá trị nhỏ đoạn Định lý Fermat điểm cực trị hàm khẳng định hàm f khả vi khoảng (a, b) đạt cực trị địa phương (cực đại địa phương cực tiểu địa phương) thuộc khoảng giá trị đạo hàm điểm cực trị địa phương không Định lý (Định lý Rolle) Giả sử cho hàm số f liên tục [a, b], khả vi khoảng (a, b) f (a) = f (b) Khi tồn c ∈ (a, b) cho f ′ (c) = Chứng minh Vì f liên tục đoạn [a, b] Theo định lý Weierstrass hàm f phải tồn giá trị lớn giá trị nhỏ đoạn [a, b], nghĩa tồn x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a,b] Có hai khả xảy ra: 1) Nếu m = M Khi f (x) = const đoạn [a, b] Nên f ′ (c) = với c ∈ (a, b) 2) Nếu m < M Theo giả thiết ta có f (a) = f (b) nên hai điểm x1 , x2 phải thuộc khoảng (a, b) Khơng tính tổng qt ta giả sử x1 ∈ (a, b) Theo định lý Fermat đạo hàm điểm không Định lý chứng minh xong Ý nghĩa hình học định lý Rolle Cho C đường cong trơn với hai đầu mút A, B có "độ cao" (trong hệ trục tọa độ Descartes) C tồn điểm mà tiếp tuyến C điểm song song với AB(hay song song với trục hồnh f (a) = f (b)) Hệ Nếu hàm số f (x) có đạo hàm khoảng (a, b) phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) phương trình f ′ (x) = có n − nghiệm phân biệt thuộc khoảng (a, b) (Phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) với (k = 1, 2, , n)) Chứng minh Giả sử phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) thứ tự x1 < x2 < < xn Khi ta áp dụng định lý Rolle cho n − đoạn [x1 , x2 ], [x2 , x3 ], , [xn−1 , xn ] phương trình f ′ (x) = có n − nghiệm thuộc n − khoảng (x1 , x2 ), (x2 , x3 ), , (xn−1 , xn ) Gọi n − nghiệm ξ1 , ξ2 , , ξn−1 ta có: f (ξ1 ) = f (ξ2 ) = = f (ξn−1 ) = Tiếp tục áp dụng định lý Rolle cho n−2 khoảng (ξ1 , ξ2 ), (ξ2 , ξ3 ), , (ξn−2 , ξn−1 ) phương trình f ′′ (x) = có n−2 nghiệm phân biệt khoảng (a, b) Tiếp tục trình sau k bước phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) Hệ Giả sử hàm số f (x) liên tục đoạn [a, b] có đạo hàm khoảng (a, b) Khi phương trình f ′ (x) = có khơng q n − nghiệm phân biệt khoảng (a, b) phương trình f (x) = có khơng q n nghiệm phân biệt khoảng Chứng minh Giả sử phương trình f (x) = có nhiều n nghiệm phân biệt khoảng (a, b), chẳng hạn n + nghiệm Khi theo hệ phương trình f ′ (x) = có n nghiệm thuộc khoảng (a, b) Điều trái với giả thiết phương trình f ′ (x) = có khơng q n − nghiệm Ta có điều phải chứng minh Độ giao hốn tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hoán tương đối mở rộng nhóm Mệnh đề Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 8, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |C (x)| |C (x)| |CH1 (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| Theo Mệnh đề 30 ta có Pr(H1 , H2 ) = X 1 X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X 1 X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề 30 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ?? ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN C (x)N Do yN ∈ CH/N (xN ) Từ suy H ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ CH (x)N N Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề ?? Chứng minh Từ Mệnh đề 30 ta có X X X |CH (y)| |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S X X CH (y)N s ⩽ l ⩽ −1 i 68 Khi đó, theo Mệnh đề 30, ta có X X |CSD2n (rli )| + |CSD2n (x)| = 0⩽l⩽ 2i −1 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 n−1 |CSD2n (rli+j s)| n n x∈Ui,j X )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n i X |CSD2n (rli+j s)| n 0⩽l⩽ 2i −1 n−1 i  − |R1 | + 2n |U n−1 | i ,li+j 2n 2n+1 (2n−1 + i + 2) 2n n −2 + = i i i  Do đó, theo Mệnh đề 30 ta có Pr(Ui,j , SD2n ) = = X 1 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i 2n+1 (2n−1 + i + 2) 2n−1 + i + i+2 = = + n+1 i 2n+1 22(n+1) i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 69 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi + = , Pr(R2 , SD16 ) = + = , 16 16 16 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(R1 , SD16 ) = Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) 1 = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + = ; 16 16 2+1 11 = , Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = + 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 70 21 Các khái niệm Định nghĩa 11 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép tốn nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử khơng) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 12 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) Định nghĩa 13 Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa 14 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa 15 Cho R vành có đơn vị 1R Một R-môđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn 71 (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-môđun trái Cho R, S hai vành Nhóm aben (M, +) song môđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -mơđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) Định nghĩa 16 Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-mơđun phải với phép tốn cộng nhân hạn chế A Định nghĩa 17 (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai mơđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Môđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, môđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các 72 phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý 26 Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân mơđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-mơđun phải Định nghĩa 18 M/N xác định Định lý gọi môđun thương môđun M môđun N 22 Một số kiến thức nhóm Một nhóm (G, ·) tập hợp G ̸= ∅ trang bị phép tốn hai ngơi · thỏa mãn điều kiện sau đây: (i) a · (b · c) = (a · b) · c với a, b, c ∈ G, (ii) Tồn phần tử e ∈ G cho a · e = a = e · a với a ∈ G, (iii) Với a ∈ G tồn phần tử a′ ∈ G cho a · a′ = a′ · a = e Để đơn giản, ta ký hiệu ab thay cho a · b Phần tử e xác định (ii) nhất, gọi phần tử đơn vị nhóm G, thường ký hiệu Với a ∈ G, phần tử a′ xác định (iii) nhất, gọi phần tử nghịch đảo a, ký hiệu a−1 Một nhóm G gọi giao hốn (hay abel ) ab = ba với a, b ∈ G Nếu nhóm G có hữu hạn phần tử ta gọi G nhóm hữu hạn, gọi số phần tử G cấp nhóm G, ký hiệu |G| Cho G nhóm, H tập G Ta gọi H nhóm G, ký hiệu H ⩽ G, điều kiện sau thỏa mãn: (i) Phép toán G hạn chế lên H cảm sinh phép toán H , (ii) H nhóm với phép tốn cảm sinh Cho G nhóm, H tập G ta ký hiệu ⟨S⟩ nhóm bé G chứa S , gọi S tập sinh ⟨S⟩ Đặc biệt, nhóm có tập sinh gồm phần tử gọi nhóm xiclíc 73 Mệnh đề 35 (Định lý Lagrange) Cho G nhóm hữu hạn, H nhóm G Khi |H| ước |G| Với G nhóm hữu hạn, H ⩽ G, ta ký hiệu |G : H| = |G| : |H|, gọi số nhóm H G Mệnh đề 36 Cho G nhóm, A, B hai nhóm hữu hạn G Ký hiệu AB = {ab | a ∈ A, b ∈ B} Khi |AB| = |A||B| |A ∩ B| Cho G nhóm, a phần tử G Với u phần tử G, liên hợp u a, ký hiệu ua , định nghĩa ua = a−1 ua Với H nhóm G, ta gọi H nhóm chuẩn tắc G, ký hiệu H ◁ G, ∈ H với a ∈ G, h ∈ H Cho N nhóm chuẩn tắc G Ký hiệu G/N = {aN | a ∈ G} Khi G/N nhóm với phép toán xác định sau Với a, b ∈ G (aN )(bN ) = abN Nhóm G/N gọi nhóm thương G N Với S tập G, tâm hóa S G, ký hiệu CG (S), định nghĩa CG (S) = {a ∈ G | ua = u với u ∈ S} Trong trường hợp S = {x}, ta dùng ký hiệu CG (x) thay cho CG (S) Tâm nhóm G, ký hiệu Z(G), định nghĩa Z(G) = CG (G) Mệnh đề 37 Cho G nhóm khơng giao hốn Khi đó, nhóm thương G/Z(G) khơng nhóm xiclíc Cho G nhóm Với x y hai phần tử G, giao hoán tử x y , ký hiệu [x, y], định nghĩa [x, y] = x−1 y −1 xy 74 Nhóm giao hoán tử G, ký hiệu G′ , định nghĩa nhóm sinh tập tất giao hoán tử {[x, y] | x, y ∈ G} Cho hai nhóm G H Một ánh xạ f : G → H gọi đồng cấu nhóm với a, b ∈ G f (ab) = f (a)f (b) Nếu đồng cấu f đơn ánh (tương ứng, toán ánh, song ánh) ta gọi f đơn cấu (tương ứng, toàn cấu, đẳng cấu) Ta ký hiệu Aut(G) nhóm tất tự đẳng cấu G Cho N H hai nhóm bất kỳ, cho θ : H → Aut(N ) đồng cấu nhóm Khi đó, tập hợp G = {(x, h) | x ∈ N, h ∈ H} nhóm với phép toán xác định sau Với (x1 , h1 ), (x2 , h2 ) ∈ G, (x1 , h1 )(x2 , h2 ) = (x1 θ(h1 )(x2 ), h1 h2 ) Nhóm G xác định gọi tích nửa trực tiếp N H ứng với tác động θ, ký hiệu G = N ×θ H Trong trường hợp đặc biệt θ đồng cấu tầm thường tích nửa trực tiếp tích trực tiếp Sau số kiến thức p-nhóm nhóm abel hữu hạn Cho p số nguyên tố Một nhóm G gọi p-nhóm |G| mơt lũy thừa p Ta thấy nhóm con, nhóm thương p-nhóm p-nhóm Mệnh đề 38 Cho p số nguyên tố Khi (i) Mọi nhóm có cấp p nhóm xiclíc (ii) Mọi nhóm có cấp p2 nhóm abel Mệnh đề 39 Mọi nhóm abel hữu hạn G biểu diễn cách thành tích trực tiếp nhóm xiclíc G∼ = Cn1 × Cn2 × · · · × Cnk ni ⩾ 2, i = 1, 2, k , n1 | n2 | · · · | nk 75 Sau số kiến thức nhóm đối xứng nhóm thay phiên Cho X tập hợp Một song ánh từ tập X đến gọi phép tập X Ký hiệu S(X) tập tất phép tập X Khi S(X) nhóm với phép tốn hợp thành ánh xạ Ta gọi S(X) nhóm đối xứng tập X Ta dùng ký hiệu Sn để nhóm đối xứng tập X = {1, 2, , n} gọi Sn nhóm đối xứng bậc n Định lý 27 Mọi phép π ∈ Sn với n ⩾ phân tích thành tích xích rời Phân tích khơng kể đến thứ tự nhân tử Cho π ∈ Sn với n ⩾ Khi đó, theo Định lý ??, ta có phân tích π thành tích xích rời π = (a11 a12 · · · a1k1 )(a21 a22 · · · a2k2 ) · · · (as1 as2 · · · asks ) ta giả thiết k1 ⩾ k2 ⩾ · · · ⩾ ks Ta gọi (k1 , k2 , , ks ) kiểu phép π Mệnh đề 40 Hai phép nhóm đối xứng Sn với n ⩾ liên hợp với chúng có kiểu Cho σ ∈ Sn với n ⩾ Ta nói cặp (σ(i), σ(j)) nghịch σ i < j σ(i) > σ(j) Dấu phép σ, ký hiệu sign(σ), xác định công thức sign(σ) = (−1)t t số nghịch σ Nếu sign(σ) = ta gọi σ phép chẵn, sign(σ) = −1 ta gọi σ phép lẻ Mệnh đề 41 Cho σ, τ ∈ Sn với n ⩾ Khi (i) sign(στ ) = sign(σ)sign(τ ) (ii) Nếu σ xích độ dài k sign(σ) = (−1)k+1 Với n ⩾ ta ký hiệu An tập phép chẵn bậc n Khi An nhóm chuẩn tắc số Sn Ta gọi An nhóm thay phiên bậc n Cuối mục kết độ giao hốn nhóm 76 Định nghĩa 19 Cho G nhóm Ký hiệu C = {(x, y) ∈ G × G | xy = yx} Độ giao hoán G, ký hiệu Pr(G), định nghĩa sau Pr(G) = |C| |G|2 Mệnh đề 42 Nếu G nhóm khơng giao hốn Pr(G) ⩽ 23 Không gian hàm Lipschitz Lip(Ω) Định nghĩa 20 Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| Lip(f ) = Lip(f, A) := sup : x, y ∈ A, x ̸= y |x − y| gọi số Lipschitz f Nhận xét 11 Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề 43 Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) 77 Nhận xét 12 Từ mệnh đề 35 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề 44 Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét 13 (i) không Ω không lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0,  x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L  x 1/β √ , Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) 78 Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý 28 (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa 21 Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý 29 (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) khơng gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (26) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (27) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (??) (??), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, theo (??), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) (28) 79 Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (??), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (??), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải khơng gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề ?? ta kết sau Hệ 12 Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 ∀f ∈ C1 (Ω), L nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) không gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề ?? nhận xét ?? (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý 30 Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý 37) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa

Ngày đăng: 05/07/2023, 18:25

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w