1. Trang chủ
  2. » Luận Văn - Báo Cáo

Chỉnh hóa nghiệm một bài toán ngược trong phương trình nhiệt

101 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 101
Dung lượng 547,32 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: CHỈNH HĨA NGHIỆM MỘT BÀI TỐN NGƯỢC TRONG PHƯƠNG TRÌNH NHIỆT LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Vật liệu tổng hợp đóng vai trò quan trọng nhiều ngành khoa học kỹ thuật học, vật lý, hóa học, sinh học Trong vật liệu tổng hợp, tính chất vật lý (chẳng hạn tính dẫn nhiệt, tính đàn hồi, tính dẫn điện, từ tính ) khơng liên tục dao động thành phần khác cấu tạo nên vật liệu Khi thành phần trộn lẫn với nhau, tính chất dao động nhanh dẫn tới cấu trúc vi mô trở lên phức tạp 479 2 Các khái niệm Định nghĩa Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm aben với phép tốn cộng, R nửa nhóm với phép tốn nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz, với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) Định nghĩa Iđêan trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa iđêan trái, vừa iđêan phải gọi iđêan vành R Cho I iđêan vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I, với x, y ∈ R Định nghĩa Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I Định nghĩa Cho R vành có đơn vị 1R Một R-môđun phải M bao gồm (M, +) nhóm aben tốn tử · : M × R → M thỏa mãn (1) (x + y) · r = x · r + y · r, (2) x · (r + s) = x · r + x · s, (3) (xr) · s = x · (rs), (4) x · 1R = x, r, s ∈ R x, y phần tử tùy ý M Lúc R gọi vành sở, M R-môđun phải ta thường ký hiệu MR Tương tự ta đinh nghĩa R-môđun trái Cho R, S hai vành Nhóm aben (M, +) song mơđun R-bên phải S -bên trái (ký hiệu S MR ) a) M R-môđun phải M S -mơđun trái b) Ta phải có (sx)r = s(xr), (r ∈ R, s ∈ S, x ∈ M ) Định nghĩa Cho M R-môđun phải Tập A M gọi môđun M (ký hiệu A ≤ M hay AR ≤ MR ), A R-mơđun phải với phép tốn cộng nhân hạn chế A Định nghĩa (1) Môđun MR gọi đơn M ̸= với A ≤ M A = A = M , nghĩa M ̸= M có hai mơđun M (2) Vành R gọi đơn R ̸= với A ≤R RR A = A = 0, nghĩa R ̸= R có hai iđêan hai phía R (3) Môđun A ≤ M gọi môđun cực tiểu môđun M A ̸= với B ≤ M thỏa mãn B < A B = (4) Tương tự, môđun A ≤ M gọi môđun cực đại A ̸= M với B ≤ M thỏa mãn B > A B = M Bổ đề MR đơn M ̸= ∀m ∈ M, m ̸= M = mR Cho MR N ≤ MR Vì N nhóm nhóm cộng aben M nên nhóm thương M/N nhóm aben (theo phần lý thuyết nhóm) Các phần tử M/N lớp ghép x + N N M phép toán cộng (x + N ) + (y + N ) = x + y + N Ta cần xây dựng phép nhân môđun để M/N trở thành môđun phải Định lý Cho MR N ≤ M (i) Quy tắc M/N × R → M/N cho (m + N, r) → (m + N )r = mr + N phép nhân mơđun (ii) Nhóm aben M/N với phép tốn nhân mơđun trở thành R-mơđun phải Định nghĩa M/N xác định Định lý gọi môđun thương môđun M mơđun N Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề 28 ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X i=1 ki số chẵn Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề 23, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 36 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên 2c(6) = 6! 60 Pr(A6 , S6 ) = (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 2c(7) = 7! 315 Một số kết liên quan Trong toàn luận văn, ký hiệu J(R) Jacobson vành R U (R) tập hợp tất phần tử khả nghịch vành R có đơn vị Trong [?], tác giả định nghĩa vành R gọi U J -vành + J(R) = U (R) Cho S vành, khơng thiết phải có đơn vị, vị nhóm S◦ = (S, ◦) S tập hợp S với phép tốn ◦:S×S →S (x, y) 7→ x ◦ y = x + y − xy Mặt khác, S vành có đơn vị, S◦ đẳng cấu với vị nhóm (S, ) R với đẳng cấu ◦ : (S, ◦) → (S, ) x 7→ − x Cụ thể, y ∈ S khả nghịch vị nhóm S◦ (được gọi phần tử tựa khả nghịch hay phần tử tựa quy) − y phần tử khả nghịch vành S nhóm phần tử khả nghịch U (S) S đẳng cấu với nhóm U◦ (S) phần tử tựa khả nghịch S Phần tử nghịch đảo y S◦ gọi tựa nghịch đảo y Ta biết I = J(S) iđêan lớn S thỏa mãn U◦ (I) = I Bổ đề ([?], Bổ đề 1.1) Các điều kiện sau tương đương vành R cho: (1) U (R) = + J(R), hay R U J -vành; (2) U (R/J(R)) = {1}; (3) C(R) iđêan R (khi C(R) = J(R)), với C(R) tập phần tử tựa quy R; (4) rb − cr ∈ J(R), r ∈ R b, c ∈ C(R); (5) ru − vr ∈ J(R), u, v ∈ U (R) r ∈ R; (6) U (R) + U (R) ⊆ J(R) (khi U (R) + U (R) = J(R)) Một vành gọi hữu hạn Dedekind ab = ba = với a, b hai phần tử vành Mệnh đề ([?], Mệnh đề 1.3) Cho R U J -vành Khi (1) ∈ J(R); (2) Nếu R thể, R ∼ = F2 ; (3) R rút gọn (khơng có phần tử lũy linh khác khơng) R giao hốn; (4) Nếu x, y ∈ R thỏa mãn xy ∈ J(R) yx ∈ J(R) xRy, yRx ⊆ J(R); (5) Giả sử I ⊆ J(R) iđêan R Khi R U J -vành R/I U J -vành; (6) R hữu hạn Dedekind; Y (7) Vành Ri U J -vành vành Ri U J -vành với i∈I i ∈ I Một vành R gọi nửa địa phương vành thương R/J(R) tổng trực tiếp iđêan phải cực tiểu Mệnh đề ([?], Mệnh đề 1.4) Vành nửa địa phương R U J -vành R/J(R) ≃ F2 × × F2 Cho R vành có đơn vị Ta ký hiệu Mn (R) vành ma trận cấp n × n R Định lý ([?], Định lý 3) Cho R vành tùy ý, có đơn vị n > Khi đó, phần tử Mn (R) tổng ba phần tử khả nghịch Mn (R) Cho R vành có đơn vị, phần tử a ∈ R gọi clean a có biểu diễn a = e + u e phần tử lũy đẳng R, u phần tử khả nghịch R Ta ký hiệu Cl(R) tập tất phần tử clean vành R Một vành R gọi clean R = Cl(R) Hệ ([?], Hệ 1.7) Cho R vành Khi đó, điều kiện sau tương đương (i) R vành rút gọn; (ii) U (R[x]) = U (R); (iii) Cl(R[x]) = Cl(R) Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) Mệnh đề ([?], Mệnh đề 4.9 (2)) Cho R vành M song môđun R Gọi T (R, M ) mở rộng tầm thường Khi tập phần tử khả nghịch T (R, M ) U (T (R, M )) = T (U (R), M ) 33 Trường hợp 2: k ∤ n Khi đó, theo Mệnh đề ??, ta có X X |CQ4n (rik )| |CQ4n (x)| = |CQ4n (1)| + −1 1⩽i⩽ 2n k x∈Rk = 4n +  2n k  − |R1 | = 4n +  2n k  − 2n = 2n(2n + k) k Từ suy Pr(Rn , Q4n ) = X 2n(2n + k) 2n + k · |CQ4n (x)| = = 2n |Rk ||Q4n | k 4n 4n x∈Rk k (ii) Giả sử H = Ui,j với i|n, ⩽ i ⩽ n, ⩽ j ⩽ i − Theo Mệnh đề ?? ta có |Ui,j | = Đặt k = 4n 4n = (n, i) i 2n Khi i |Ui,j | = 4n = 2k i Do Ui,j = {rli , rli+j s | ⩽ l ⩽ k − 1} Từ suy X X |CQ4n (x)| = x∈Ui,j |CQ4n (rli )| + 0⩽l⩽k−1 = |CQ4n (1)| + |CQ4n (rn )| + X |CQ4n (rli+j s)| 0⩽l⩽k−1 X |CQ4n (rli )| + 1⩽l⩽k−1 l̸= k2 X |CQ4n (rli+j s)| 0⩽l⩽k−1 = |Q4n | + |Q4n | + (k − 2)|R1 | + k|Un,j | 4n(n + i + 2) = 4n + 4n + (k − 2)2n + 4k = i Do đó, theo Mệnh đề 27 Pr(Ui,j , Q4n ) = X 1 4n(n + i + 2) n+i+2 · |CQ4n (x)| = = 4n |Ui,j ||Q4n | i 4n 4n x∈Ui,j i 34 Trong ví dụ sau ta tính lại độ giao hốn tương đối nhóm nhóm quaternion Q8 , tính độ giao hốn tương đối nhóm nhóm Q12 cách áp dụng Mệnh đề 38 Ví dụ (i) Với n = 2, xét nhóm quaternion Q8 (cho Ví dụ 7) Các nhóm Q8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = {1}; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩; Q8 Khi 2+2 2·2+4 2+1 = , Pr(R2 , Q8 ) = = 1, Pr(R4 , Q8 ) = = 1; 2·2 2·2 4·2 2+2+2 = ; Pr(Q8 , Q8 ) = Pr(Q8 ) = Pr(U2,0 , Q8 ) = Pr(U2,1 , Q8 ) = 4·2 (ii) Với n = 3, xét nhóm quaternion Pr(R1 , Q8 ) = Q12 = {1, r, r2 , r3 , r4 , r5 , s, rs, r2 s, r3 s, r4 s, r5 s} Các nhóm Q12 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R3 = ⟨r3 ⟩, R6 = {1}; U3,0 = ⟨r3 , s⟩, U3,1 = ⟨r3 , rs⟩, U3,2 = ⟨r3 , r2 s⟩; Q12 Khi 3+1 2·3+2 = , Pr(R2 , Q12 ) = = , 2·3 4·3 3+3 2·3+6 Pr(R3 , Q12 ) = = 1, Pr(R6 , Q12 ) = = 1; 2·3 4·3 3+3+2 Pr(U3,0 , Q12 ) = Pr(U3,1 , Q12 ) = Pr(U3,2 , Q12 ) = = ; 4·3 Pr(Q12 , Q12 ) = Pr(Q12 ) = Pr(R1 , Q12 ) = 14 Các đặc trưng ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) 35 14.1 Các tính chất tổng quát ∆U -vành Bổ đề Cho R vành tùy ý, ta có (1) ∆(R) vành R (2) ∆(R) iđêan R ∆(R) = J(R) (3) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R) Y Y Y (4) Nếu R = Ri tích vành Ri , ∆( Ri ) = ∆(Ri ) i∈I i∈I i∈I (5) Nếu R vành nửa địa phương, ∆(R) = J(R) (6) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ) (7) ∆(R[[x]]) = ∆(R)[[x]] Vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề 21 R ∆U -vành U (R) + U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, Lấy u, v ∈ U (R), ta có + u ∈ ∆(R), − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) Các tính chất ∆U -vành Mệnh đề 22 Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R division ring, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R); (4) R Dedekind finite; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I 36 (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể, điều áp dụng cho Z = Z(R) tâm R Chứng minh (1) Hiển nhiên (2) (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành, 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi − ba lũy đẳng R, [b(1 − ba)2 ] = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆ Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) ideal, ∆(R/I) = ∆(R)/I Giả sử R ∆U vành Khi u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆(U )vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Giả thiết U (T ) = U (T ) ∩ T nghĩa ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) Định lý 13 Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên 37 (⇒:) Giả sử Mn (R) ∆U -vành n > Đầu  tiên ta chứng  0 − a 0 0        minh R division Lấy a ∈ R, a ̸= 0, ta có X =  ∈       0 Mn (R) X = DoMn (R) ∆U -vành, ta lấy X ∈∆(Mn (R)) Lấy U=  0 1 0 0 0 0 0          0     ∈ M (R) Khi I − U X =     n n             0 0 0 a khả nghịch Mn (R), hay a ∈ U (R) Do đó, R division ∼ Tiếp  theo, ta chứng  minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy a 0 0 a 0      0 X=  ∈ Mn (R) Khi X khả nghịch Vì Mn (R)       0 a   1−a 0  − a        ∆U -vành nên ta có In − X =   ∈ ∆(Mn (R))       0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2     1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết, ta có 38  In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X =  X2 0 In−2   X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề 23 Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Định lý 14 Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành   u m ∈ U (T (R, M )) = T (U (R), M ), Chứng minh (:⇒) Lấy u¯ = u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy  a ¯= 0   + a m a  ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 12 Giả sử  M là(R, S) song mơđun Khi vành ma trận R M tam giác dạng ∆U -vành R S S ∆U -vành Hệ 13 R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ 39 14.2 Một vài tính chất đại số ∆U -vành Nhớ lại rằng, vành R gọi vành 2-primal nguyên tố N (R) Mệnh đề 24 Cho R vành 2-primal Nếu vành đa thức R[x] ∆U vành, R ∆U -vành Chứng minh R vành 2-primal, theo [10, Mệnh đề 19], ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề 25 Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề 2.4(5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]), R ∼ = R[[x]]/(x), kết suy từ Mệnh đề 2.4(5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu thỏa ϵi = idR (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) 40 (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆((R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = + ∆(R), R ∆U -vành Suy y − = i(x) + v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Mệnh đề 26 Cho R vành, M monoid RM monoid ring Nếu RM ∆U -vành, R ∆U -vành Mệnh đề 27 Cho R vành giao hốn có đơn gị Vành đa thức R[x] R ∆U R ∆U 14.3 Tính chất ∆U lớp vành Mệnh đề 28 Các điều kiện sau tương đương vành R (1) R ∆U -vành (2) Tất clean elements R ∆-clean Định lý 15 Cho R vành, điều kiện sau tương đương (1) R clean ∆U -vành; (2) Với a ∈ R, ta có a − a2 ∈ ∆(R) a − e ∈ ∆(R) e lũy đẳng, e ∈ R; (3) R ∆-clean ∆U -vành; (4) R vành ∆-clean 41 Bổ đề Nếu R vành unit-regular ∆(R) = Định lý 16 Cho R vành, điều sau tương đương (1) R regular ∆U -vành (2) R strongly regular ∆U -vành (3) R unit-regular ∆U -vành (4) R có identity x2 = x (R vành Boolean) Định lý 17 Cho R vành, điều sau tương đương (1) R semiregular ∆U -vành (2) R exchange ∆U -vành (3) R/J(R) vành Boolean Hệ 14 Cho R ∆U -vành, điều sau tương đương (1) R semiregular ring (2) R exchange ring (3) R clean ring 15 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa 13 Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa 25 ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa 21 Sau số ví dụ độ giao hốn tương đối số nhóm 42 Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa 25 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r r2 r3 rs rs r2 s r3 s s r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r 43 Bằng cách đếm trực tiếp theo Định nghĩa 25 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa 25 ta có bảng sau 44 Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề 29 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh Kết sau cho ta cơng thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 30 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| 45 Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề 27, ta có k X X |CG (x)| = Pr(H, G) = |O(xi )||CG (xi )| |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề 10 Cho H nhóm G Khi với phần tử x∈G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề 18, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| 46 Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hốn tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề 31 Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) Chứng minh Theo Mệnh đề 27 ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề 27 ta có Pr(H, G) = X |CH (y)| X |CH (y)| = |H||G| |G| |H| y∈G y∈G Theo Bổ đề ta có |CH (y)| |C (y)| ⩾ G với y ∈ G |H| |G| Từ suy Pr(H, G) ⩾ X |CG (y)| X = |CG (y)| = Pr(G) |G| |G| |G| y∈G y∈G Vậy ta có điều phải chứng minh 47 Mệnh đề sau cho ta điều kiện cần đủ để xảy đẳng thức Mệnh đề 32 Cho H nhóm nhóm G Khi (i) Pr(H, G) = Pr(H) G = HCG (x) với x ∈ H (ii) Pr(H, G) = Pr(G) G = HCG (x) với x ∈ G Chứng minh (i) Từ phép chứng minh Mệnh đề 29 ta thấy Pr(H, G) = Pr(H) |CG (x)| |CH (x)| = với x ∈ H |H| |G| Theo Bổ đề 6, điều xảy G = HCG (x) với x ∈ H Vậy ta có điều phải chứng minh (ii) Lập luận hồn tồn tương tự ta có điều phải chứng minh Từ Mệnh đề 30 ta có hệ sau Hệ 15 Cho H nhóm nhóm G Nếu Pr(H, G) = Pr(G) Pr(H) = Pr(G) Mệnh đề sau cho ta điều kiện đủ để không xảy đẳng thức Mệnh đề 29 Mệnh đề 33 Cho H nhóm nhóm G Nếu H khơng chuẩn tắc G Pr(G) < Pr(H, G) < Pr(H) Chứng minh Giả sử H không chuẩn tắc G Trước tiên ta chứng minh tồn x ∈ H cho G ̸= HCG (x) Thật vậy, giả sử trái lại G = HCG (x) với x ∈ H Lấy g ∈ G x ∈ H Khi g −1 ∈ G = HCG (x) Giả sử g −1 = với h ∈ H, a ∈ CG (x) Khi ta có g −1 xg = (ha)x(ha)−1 = haxa−1 h−1 = hxaa−1 h−1 = hxh−1 ∈ H Điều chứng tỏ H ◁ G, trái với giả thiết Vậy ta có điều phải chứng minh Do đó, theo Bổ đề 30 ta có Pr(H, G) ̸= Pr(H) Pr(H, G) ̸= Pr(G) Kết hợp điều với Mệnh đề ta có bất đẳng thức cần chứng minh

Ngày đăng: 05/07/2023, 21:36