1. Trang chủ
  2. » Luận Văn - Báo Cáo

Một số bài toán về tính ổn địnhvững của hệ động lực tuyến tính

92 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: MỘT SỐ BÀI TỐN VỀ TÍNH ỔN ĐỊNH VỮNG CỦA HỆ ĐỘNG LỰC TUYẾN TÍNH LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Hiện có giải thuật cho chỉnh hóa thưa trình bày nhiều sách báo, tạp chí toán học phương pháp loại Gradient [9], phương pháp Newton nửa trơn [11], phương pháp cải tiến Nesterov [9], phương pháp Stochastic [12], Trong số phương pháp kể trên, phương pháp Newton nửa trơn có tốc độ hội tụ bậc hai nhanh [11] Với tìm hiểu phương pháp Newton nửa trơn 856 2 So sánh không gian vector hữu hạn chiều không gian vector vô hạn chiều Chúng ta nhắc lại sơ qua điểm khác không gian vector hữu hạn chiều không gian vector vơ hạn chiều từ cách nhìn đại số topo Định nghĩa (i) Cho E F hai khơng gian vector Ta nói E F đẳng cấu tuyến tính tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu topo tồn ánh xạ liên tục T : E → F ánh xạ tuyến tính − với ánh xạ ngược liên tục T −1 : F → E (ii) Cho (E, ∥.∥E ) (F, ∥.∥F ) Ta nói (E, ∥.∥E ) (F, ∥.∥F ) đẳng cấu metric tồn ánh xạ T : E → F ánh xạ tuyến tính − từ E vào F với ∥T (x)∥F = ∥x∥E với x ∈ E Ta nhớ lại khái niệm không gian đối ngẫu không gian vector định chuẩn Định nghĩa Cho (E, ∥.∥) không gian vector định chuẩn Không gian đối ngẫu E ′ E khơng gian tuyến tính định nghĩa bởi: E ′ := {f : E → R : f tuyến tính liên tục} E ′ trang bị chuẩn ∥f ∥E ′ := |f (x)| < +∞ x∈E\{0} ∥x∥ sup Định lý (E ′ , ∥.∥E ′ ) không gian Banach Chứng minh Ta chứng minh dãy Cauchy E ′ hội tụ Giả sử {fn } dãy Cauchy E ′ , tức ∥fm − fn ∥E ′ → m, n → ∞, với x ∈ E ta có |fm (x) − fn (x)| = |(fm − fn )(x)| tính tuyến tính, hay |fm (x) − fn (x)| ≤ ∥fm − fn ∥E ′ ∥x∥E → m, n → ∞, {fn } dãy Cauchy E ′ Ta suy fn (x) dãy Cauchy R, fn (x) hội tụ, nghĩa tồn f (x) cho f (x) = lim fn (x) n→∞ Ta cần chứng minh f (x) tuyến tính liên tục Tính tuyến tính hiển nhiên, ta cần chứng minh tính liên tục, hay ta chứng minh f (x) bị chặn |f (x)| = lim |fn (x)| ≤ lim ∥fn ∥E ′ ∥x∥E , n→∞ n→∞ Vì fn ∈ E ′ nên fn tuyến tinh bị chặn, tức tồn M > cho ∥fn ∥ ≤ M , từ ta suy |f (x)| ≤ lim M ∥x∥E = M ∥x∥E n→∞ Ta có điều phải chứng minh Lưu ý: Nếu f ∈ E ′ x ∈ E ta viết ⟨f, x⟩E ′ ×E thay cho f (x) ta gọi ⟨., ⟩E ′ ×E tích vơ hướng không gian đối ngẫu E, E ′ Ký hiệu chung không gian đối ngẫu thực E không gian Hilbert ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép toán hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép tốn giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép toán hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép tốn lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thông thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh Vô hạn chiều Định nghĩa (i) Không gian vector thực E gọi vô hạn chiều khơng hữu hạn chiều ta viết dimR E = ∞ (ii) Nếu dimR E = ∞, hệ B ⊂ E gọi sở (đại số Hamel) E hệ vector độc lập tuyến tính (nghĩa tập hữu hạn độc lập tuyến tính) B tập lớn tất tập chứa vector độc lập tuyến tính E Điều chứng minh theo nguyên lý cực đại Hausdorff, với không gian vector vơ hạn chiều E có sở B phần tử thuộc E biểu diễn (hữu hạn) theo tổ hợp tuyến tính phần tử thuộc B Khi dimR E = ∞, (E, ∥.∥E ) (E ′ , ∥.∥E ′ ) không thiết đẳng cấu topo Tuy nhiên, ta chứng minh vài tính chất topo (E ′ , ∥.∥E ′ ) tính tách giữ (E, ∥.∥E ) Định lý (E, ∥.∥E ) tách (E ′ , ∥.∥E ′ ) tách Trước chứng minh định lý ta cần sử dụng điều kiện trù mật cho khơng gian định chuẩn, hệ định lý Hahn-Banach thứ hai hình học Mệnh đề (Điều kiện trù mật không gian con) Cho (E, ∥.∥E ) không gian định chuẩn Giả sử M ⊂ E không gian không trù mật (E, ∥.∥E ) lấy x0 ∈ E \ M Khi tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ M ⟨f, x0 ⟩E ′ ×E = Chứng minh Từ định lý Hahn-Banach thứ hai hình học, tồn g ∈ E ′ cho siêu phẳng H := {x ∈ E : ⟨g, x⟩E ′ ×E = α}, tách tập M {x0 } cách nghiêm ngặt, tức ⟨g, x⟩E ′ ×E < α < ⟨g, x0 ⟩E ′ ×E ∀x ∈ M (1) Từ M không gian con, theo (35), suy λ ⟨g, x⟩E ′ ×E < α, ∀λ ∈ R, ⟨g, x⟩E ′ ×E = 0, ∀x ∈ M (2) Do đó, ta xác định hàm f ∈ E ′ f := g, ⟨g, x0 ⟩E ′ ×E ta có điều phải chứng minh Chứng minh Định lý 29 Cho D := {fh : h ∈ N} ⊂ (E ′ , ∥.∥E ′ ), trù mật Với h có phần tử xh ∈ E với ∥xh ∥ = 1 |fh (x)| ≥ ∥fh ∥E ′ Cho e := spanQ {xh : h ∈ N} D := spanR {xh : h ∈ N}, D tức là, tập tất tổ hợp tuyến tính phần tử {xh : e đếm được, D không gian h ∈ N} với hệ số thực Khi D E theo cách xây dựng ˜ ⊂ (D, ∥.∥) trù mật D Để đưa kết luận chứng minh, ta cần phải D ⊂ (D, ∥.∥) trù mật Theo phản chứng, D không trù mật, lấy x0 ∈ E \ D Khi từ mệnh đề 22, tồn f ∈ E ′ cho ⟨f, x⟩E ′ ×E = 0, ∀x ∈ D ⟨f, x0 ⟩E ′ ×E = Từ D trù mật, có dãy (fhk )k mà lim ∥fhk − f ∥E ′ = k→∞ Tuy nhiên, từ ∥xhk ∥ = 1, ∥fhk − f ∥E ′ ≥ |fhk (xhk ) − f (xhk )| = |f (xhk )| ≥ ∥fhk ∥E ′ ∀k ∈ N Do dó ∥fhk ∥E ′ → k → ∞, nghĩa f ≡ 0, mâu thuẫn với f (x0 ) = Vì D = E Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề ?? ta có kết sau Mệnh đề Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An Để tính c(n) ta cần kết sau Mệnh đề Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề 42, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề 18 Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) u(sh − f )dx ≤ ∥u∥ p′ ∥f − sh ∥Lp (Ω) → L (Ω) (14) Ω Điều kiện (45), (48) tính liên tục ϕ cho Z Z ϕ(f ) = lim ϕ(sh ) = lim h→∞ u sh dx = h→∞ Ω u f dx, ∀f ∈ Lp (Ω) Ω ′ Đặc biệt, tồn u ∈ Lp (Ω) cho T (u) = ϕ Ta điều phải chứng minh Ta chứng minh (46) Trong trường hợp p = 1, giả sử M > cho EM := {x ∈ Ω : u(x) > M } Khi Z udx = ϕ(χEM ) ≤ ∥ϕ∥(Lp (Ω))′ |EM | M |EM | ≤ EM Vì |EM | = M > ∥ϕ∥(Lp (Ω))′ , từ ta suy ≤ u+ (x) ≤ ∥ϕ∥(Lp (Ω))′ hầu khắp nơi x ∈ Ω ⇔ ∥u+ ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ Tương tự ∥u− ∥L∞ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ ′ u = u+ − u− ∈ L∞ (Ω) = L1 (Ω) Trong trường hợp < p < ∞, theo xấp xỉ hàm đơn giản, cho (sh ) dãy hàm đơn giản đo cho ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ |u| Ω, (15) lim sh (x) = |u(x)|, ∀x ∈ Ω (16) h→∞ Bây ta chứng minh ước lượng quan trọng sau ∥sh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (17) 20 Tập hợp ′ uh (x) := |sh (x)|p −1 sign(u(x)) x ∈ Ω Khi (uh ) dãy hàm đơn giản Z Z (49) ′ ∥sh ∥pLp′ (Ω) p′ |sh | dx ≤ = Ω Ω ′ shp −1 |u|dx Z (45) = uh u dx = ϕ(uh ) Ω Z ≤ ∥ϕ∥(Lp (Ω))′ ∥uh ∥Lp (Ω) = ∥ϕ∥(Lp (Ω))′ (p′ −1)p |sh |  p1 dx Ω Z  p1 p′ = ∥ϕ∥(Lp (Ω))′ |sh | dx Ω p′ = ∥ϕ∥(Lp (Ω))′ ∥sh ∥Lpp (Ω) Nếu ∥sh ∥Lp′ (Ω) = 0, (51) hiển nhiên Nếu ∥sh ∥Lp′ (Ω) > 0, bất đẳng thức (51) chia cho ∥sh ∥ p′ p Lp′ (Ω) Từ (50), (51) bổ đề Fatou ta có Z Z ′ p ∥u∥L = p′ (Ω) ′ |u|p dx ≤ lim inf Ω h→∞ Ω p ý p′ (1 − ) = ′ ′ ′ |sh |p dx = lim inf ∥sh ∥pLp′ (Ω) ≤ ∥ϕ∥p(Lp (Ω))′ < ∞ h→∞ Do (46) < p < ∞ Bước 3: Giả sử |Ω| = ∞ ta chứng minh T is still onto Cho (Ω)h dãy tăng tập bị chặn cho Ω = ∪∞ h=1 Ωh ′ Ta đồng ý với nhận định Lp (Ωh ) Lp (Ωh ), (h = 1, 2, ) với không gian ′ Lp (Ω) Lp (Ω) bao gồm hàm khuyết bên Ωh Đặc biệt, với ϕ ∈ (Lp (Ω))′ suy ϕ ∈ (Lp (Ω))′ ∥ϕ∥(Lp (Ωh ))′ ≤ ∥ϕ∥(Lp (Ω))′ , ∀h (18) ′ Từ bước 2, với h, tồn uh ∈ Lp (Ωh ) cho ∥uh ∥Lp′ (Ω) = ∥ϕ∥(Lp (Ωh ))′ Z ϕ(f ) = Ωh uh f dx, ∀f ∈ Lp (Ωh ) (19) (20) 21 Chú ý từ Lp (Ωh ) ⊂ Lp (Ωh+1 ), theo tính uh+1 = uh hầu khắp nơi Ωh Vì vậy, suy định nghĩa hàm u : Ω → R u(x) := uh (x) x ∈ Ωh Từ (52), (53) định lý đơn điệu hội tụ ∥u∥Lp′ (Ω) = lim ∥u∥Lp′ (Ωh ) = lim ∥uh ∥Lp′ (Ω) ≤ ∥ϕ∥(Lp (Ω))′ < ∞, h→∞ h→∞ ′ u ∈ Lp (Ω) Hơn nữa, f ∈ Lp (Ω), theo định lý tính hội tụ trội f χΩh → f LP (Ω), thế, theo tính liên tục ϕ (54), Z ϕ(f ) = lim ϕ(f χΩh ) = lim h→∞ h→∞ Z u f dx = Ωh u f dx Ω Ta hoàn tất chứng minh Nhận xét Định lý biểu diễn Riesz mở rộng đến khơng gian đo (X, M, µ) Chính xác hơn, ta xác định ′ Lp (X, µ) ≡ (Lp (X, à)) cũn gi nu ã < p < cho o tng quỏt ã p = biết µ σ -hữu hạn Cách xác định sai trường hợp khác Support hàm Lp Ta biết rằng, cho hàm f : Rn R, support f tập hợp spt(f ) := Bao đóng{x ∈ Rn : f (x) ̸= 0} = {x ∈ Ω : f (x) ̸= 0} (S) Định nghĩa khơng cịn phù hợp cho hàm f ∈ Lp (Rn ) Thật vậy, ta muốn khái niệm thỏa mãn tính chất sau f1 = f2 hầu khắp nơi Rn ⇒ spt(f1 ) = spt(f2 ), trừ số phần không đáng kể 22 Nhưng trường hợp khơng Thật Ví dụ: Cho f1 := χQ : R → R f2 ≡ Khi đó, rõ ràng f1 = f2 hầu khắp nơi R spt(f1 ) = Q = R spt(f2 ) = ∅ Mệnh đề (Support thiết yếu cùa hàm) Cho f : Rn → R Ký hiệu Af := {ω ⊂ Rn : ω tập mở f = hầu khắp nơi ω} cho Af := ∪ω∈Af ω Khi Af tập mở f = hầu khắp nơi Af Tập đóng spte (f ) := Rn \ Af (ES) gọi support cần thiết f Rn Nhận xét (i) Từ định nghĩa (ES), suy ra, f1 = f2 hầu khắp nơi Rn , spte (f1 ) = spte (f2 ) (ii) Định nghĩa (S) (ES) giống hàm liên tục Chính xác Bài tập Nếu f : Rn → R liên tục, Rn \ Af = {x ∈ Rn : f (x) ̸= 0} Chứng minh mệnh đề 35 Hiển nhiên Af tập mở Ta chứng minh f (x) = hầu khắp nơi x ∈ Af (21) Từ Rn không gian metric tách được, thỏa mãn tiên đề thứ hai tính đếm (Định lý 17) Do tồn họ đếm tập mở U = {Ui : i ∈ N} thỏa mãn với tập mở Rn hợp phần tử đếm U Với ω ∈ Af , giả sử ω = ∪i∈Jω Ui 23 cho số phù hợp Jω ⊂ N cho J := ∪ω∈Af Jω Do Af = ∪i∈J Ui Từ f = hầu khắp nơi Ui với i ∈ J , theo (55) Mở rộng toán tử ∆ cho vành khơng có đơn vị Bây ta thay đổi định nghĩa ∆ để làm việc vành không chứa đơn vị Cụ thể, xét tập ∆◦ (R) = {r ∈ R|r + U◦ (R) ⊆ U◦ (R)} Khi R vành có đơn vị ∆◦ (R) = ∆(R) Với vành R bất kỳ, khơng thiết phải có đơn vị Ta ký hiệu R1 vành bao gồm R đơn vị Z Khi đó, U◦ (Z) = Ta dễ dàng kiểm tra bổ đề sau Bổ đề Cho R vành, không thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Bổ đề rằng, ta mở rộng định nghĩa ∆ cho tất vành, không thiết phải có đơn vị khẳng định Định lý tương đương với vành tùy ý Hơn nữa, điều kiện tương đương đúng, ∆(∆(R)) = ∆(R) Ta biết kết cổ điển Jacobsson J(R) vành J(eRe) = eJ(R)e, với e lũy đẳng R Ta dấu không trường hợp tổng quát ∆(R) Tuy nhiên quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) giữ với giả thiết e∆(R)e ⊆ ∆(R) Trong Hệ ta thêm vào giả thiết ∈ U (R) Cho R vành có đơn vị Phần tử a ∈ R gọi quy (tương ứng, quy đơn vị) R a = aua với u ∈ R (tương ứng, u ∈ U (R)) Nếu phần tử vành R quy (tương ứng, quy đơn vị) R gọi vành quy (tương ứng, vành quy đơn vị) Mệnh đề Cho R vành bất kỳ, ta có (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác không 24 (3) ∆(R) không chứa phần tử quy đơn vị khác khơng Chứng minh (1) Nếu y ∈ U (eRe), y1 = y + (1 − e) ∈ U (R) thỏa mãn y = ey1 e Ta lấy r ∈ e∆(R)e ⊆ ∆(R) ta phần tử khả nghịch y ∈ U (eRe) ta có e − yr ∈ U (eRe) Như trên, lấy y1 = y+1−e ∈ U (R) Từ r ∈ e∆(R)e ⊆ ∆(R), ta 1−y1 r ∈ U (R) Do tồn phần tử b ∈ R thỏa mãn b(1 − y1 r) = e = eb(1 − y1 r)e = eb(e − y1 re)e = eb(e − (y + − e)re) = eb(e − yre) + eb(1 − e)re = ebe(e − yre), dấu cuối r ∈ eRe Điều cho thấy e − yre = e − yr phần tử khả nghịch trái eRe Từ − y1 r ∈ U (R) ta có (1 − y1 r)b = = (1 − (y + − e)r)b = (1 − yr)b Nhân hai vế với e ta e = e(1 − yr)be = (e − yr)be = (e − yr)ebe Điều có nghĩa ebe phần tử khả nghịch phải trái e − yr (2) Nếu e2 = e ∈ ∆(R), − e = e + (1 − 2e) ∈ U (R), − 2e khả nghịch, e = (3) Nếu a ∈ ∆(R) phần tử quy đơn vị, tồn phần tử khả nghịch u ∈ U (R) thỏa mãn au lũy đẳng Theo điều kiện (2) ta suy a phải không Hệ Cho R vành quy đơn vị, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Dưới số ví dụ mà ∆(R) ̸= J(R) Ví dụ (1) Ở Định lý 3, ta nhận thấy A vành vành R thỏa mãn U (R) = U (A), J(A) ⊆ ∆(R) Cụ thể chọn A miền giao hoán với J(A) ̸= R = A[x], ta = J(R) ⊂ J(A) ⊆ ∆(R) (xem [?], Bài tập 4.24) (2) ([?], Ví dụ 2.5) Cho R = F2 < x, y > / < x2 > Khi J(R) = U (R) = + F2 x + xRx Cụ thể, F2 x + xRx chứa ∆(R) J(R) = (3) Cho S vành tùy ý thỏa mãn J(S) = ∆(S) ̸= cho R = M2 (S) Khi đó, theo Định lý (1), ∆(R) = J(R) = 0, đó, e = e11 ∈ R, e∆(R)e = eJ(R)e = J(eRe) = ∆(eRe) ≃ 25 ∆(S) ̸= Điều quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) Mệnh đề 29 nghiêm ngặt trường hợp tổng quát (4) Cho A miền giao hoán với J(A) ̸= S = A[x] Khi đó, theo (1), ̸= J(A) ⊆ ∆(S) rõ ràng J(S) = R = M2 (S), A miền giao hoán địa phương Theo Định lý 2, ∆(R) = J(R) = Lưu ý, tâm Z = Z(R) R = M2 (S) đẳng cấu với S U (Z) = U (R) ∩ Z Do đó, = ∆(R) ∩ Z ⊆ ∆(Z) ≃ J(A) ̸= Do đó, quan hệ bao hàm Hệ nghiêm ngặt J(R) = = J(Z(R)) Một vành R gọi 2-nguyên thủy tập phần tử lũy linh N (R) trùng với nguyên tố B(R), tức R/B(R) vành rút gọn Mệnh đề Giả sử R vành 2-nguyên thủy Khi ∆(R[x]) = ∆(R) + J(R[x]) Chứng minh Trước tiên ta giả sử R vành rút gọn Khi theo Hệ 27 ta có U (R[x]) = U (R) Do đó, theo định nghĩa ∆(R[x]), ta có ∆(R) ⊆ ∆(R[x]) Lấy a + a0 ∈ ∆(R[x]) a ∈ R[x]x a0 ∈ R Khi đó, u ∈ U (R), a + a0 + u ∈ U (R) Ta có a0 + u ∈ U (R) a = ∆(R) = ∆(R[x]) Bây ta giả sử R vành 2-nguyên thủy Rõ ràng B(R[x]) = B(R)[x] ⊆ J(R[x]) R vành 2-nguyên thủy R/B(R) vành rút gọn J(R[x]) = B(R[x]) = B(R)[x] Áp dụng phần đầu chứng minh cho R/B(R) Mệnh đề (2) ta có ∆(R) + B(R)[x] = ∆(R/B(R)[x]) = ∆(R[x]/J(R[x])) = ∆(R[x])/J(R[x]) Ta có điều cần chứng minh Mở rộng Dorroh mở rộng tail ring ∆U -vành Mệnh đề Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) 26 (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý 10 Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề 10 R[D, C] ∆U -vành D C ∆U -vành 9.1 Các nhóm vành Định lý 11 Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý 12 Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành 10 Không gian hàm Lipschitz Lip(Ω) Định nghĩa 10 Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| 27 gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề 11 Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét 10 Từ mệnh đề suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn không gian C1 (Ω) Mệnh đề 12 Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét 11 (i) không Ω không lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ 28 với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0,  x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L  x 1/β √ Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > , L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý 13 (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo khơng N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa 11 Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý 14 (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) khơng gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (22)

Ngày đăng: 05/07/2023, 15:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w