1. Trang chủ
  2. » Luận Văn - Báo Cáo

Ứng dụng của lý thuyết nhóm trong một số bài toán sơ cấp

97 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 97
Dung lượng 589,83 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ỨNG DỤNG CỦA LÝ THUYẾT NHĨM TRONG MỘT SỐ BÀI TỐN SƠ CẤP LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Nhóm topo G Birkhoff đưa vào năm 1936 [1] Sau đó, nhiều tác giả giới giới thiệu nhiều khái niệm suy rộng thu kết mở rộng số kết nhóm topo ([1], [2], [4], [5], [6], [7]) Đặc biệt, vào năm 1996, A S Gulko giới thiệu khái niệm không gian cầu trường (rectifiable space), chứng minh nhóm topo không gian cầu trường được, không gian cầu trường suy rộng nhóm topo Hơn nữa, tác giả đưa ví dụ nhằm mở rộng không tầm thường ([4]) Gần đây, số tác giả nghiên cứu tính chất compact tính chất Fréchet-Urysohn, tính chất FréchetUrysohn mạnh không gian cầu trường thu nhiều kết thú vị ([7], [8]) Hơn nữa, [7] tác giả đặt tốn sau 902 2 Khơng gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 42 suy f ∈ Lip(A), với A ⊂ Rn , có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét (i) không Ω khơng lồi p Ví dụ: Cho Ω = {(x, y) ∈ R : y < |x|, x2 + y < 1} ( y β y > f (x, y) := y ≤ với 1, β < Khi f ∈ C1 \ Lip(Ω) Thật vậy, dễ thấy f ∈ C1 Ta chứng minh f ∈ / Lip(Ω) Theo phản chứng, giả sử f ∈ Lip(Ω) Khi tồn L > thỏa mãn, với (x, y) ∈ Ω với x > 0, y > 0,  x 1/β |f (x, y) − f (−x, y)| = 2y β ≤ 2Lx ⇔ y ≤ L  x 1/β √ , Từ 1/2 < 1/β , ta chọn (x, y) ∈ Ω thỏa mãn x > y > L điều mấu thuẫn với bất đẳng thức trước (ii) Quan hệ bao hàm chặt Ví dụ: Cho Ω = (−1, 1) f (x) = |x| Khi f ∈ Lip(Ω) \ C1 (Ω) Mặc dù không gian hàm Lipschitz Lip(Ω) rộng hàm khả vi liên tục C1 (Ω), chúng có chung tính chất quan trọng, tính khả vi, chứng minh trường hợp chiều Định lý (Rademacher) Cho Ω ∈ Rn tập mở cho f ∈ Lip(Ω) Khi f khả vi x, Ln hầu khắp nơi, x ∈ Ω, nghĩa bỏ tập có độ đo không N ⊂ Ω, với x ∈ Ω \ N tồn hàm tuyến tính varphi : Rn → R thỏa mãn f (y) − f (x) − φ(y − x) = y→x y−x lim Đặc biệt, với x ∈ Ω \ N tồn ∇f (x) Định nghĩa Cho Ω ⊂ Rn tập mở bị chặn, cho f ∈ Lip(Ω) Ta biểu thị ∥f ∥Lip = ∥f ∥Lip,Ω := ∥f ∥∞,Ω + Lip(f, Ω) ∥.∥Lip gọi chuẩn Lip Định lý (Lip(Ω), ∥.∥Lip ) không gian Banach vô hạn chiều không không gian Hilbert, biết Ω ∈ Rn tập mở bị chặn Chứng minh Dễ thấy (Lip(Ω), ∥.∥Lip ) không gian tuyến tính định chuẩn, ý Lip(f + g) ≤ Lip(f ) + Lip(g) ∀f, g ∈ Lip(Ω) (1) Ta phải tính đầy đủ Cho (fh )h dãy Cauchy (Lip(Ω), ∥.∥Lip ), nghĩa với ϵ > tồn h = h(ϵ) ∈ N thỏa mãn |fh (x) − fk (y)| + |fh (x) − fk (y) − fh (z) + fk (z)| ≤ |y − z| (2) ∥fh − fk ∥∞ + Lip(fh − fk ) = ∥fh − fk ∥Lip ≤ ϵ ∀k > h > h, x, y, z ∈ Ω với y ̸= z Theo (1) (2), suy tồn L > thỏa mãn Lip(fh ) ≤ L ∀h, (3) theo (2), (fh )h dãy Cauchy (C0 (Ω), ∥.∥∞ ) Khi đó, tồn f ∈ C0 (Ω) thỏa mãn fh → f Ω Theo (3), ta Lip(f ) ≤ L, f ∈ Ω Lấy qua giới hạn (2), k → ∞, ϵ > tồn h = h(ϵ) ∈ N cho |fh (x) − f (x)| + fh (y) − f (y) − fh (z) + f (z) ≤ϵ y−z ∀h > h, x, y, z ∈ Ω, y ̸= z Điều có nghĩa lim ∥fh − f ∥Lip = h→∞ Từ tập hợp hàm đa thức chứa Lip(Ω), Lip(Ω) vô hạn chiều Cuối cùng, ta cần phải chứng minh khơng phải không gian Hilbert, lập luận tương tự trường hợp trước, cách sử dụng đẳng thức hình bình hành Theo hệ mệnh đề 16 ta kết sau Hệ Bao hàm C1 (Ω) ⊂ Lip(Ω) ánh xạ song Lipszhitz, nghĩa ∥f ∥C1 ≤ ∥f ∥Lip ≤ L∥f ∥C1 L ∀f ∈ C1 (Ω), nghiêm ngặt, biết Ω ⊂ Rn tập lồi, mở bị chặn Đặc biệt, C1 (Ω) khơng gian đóng (Lip(Ω), ∥.∥Lip ) Chứng minh Ta chứng minh khẳng định trường hợp n = Ω = (a, b) Theo mệnh đề 16 nhận xét (ii), ta cần quan hệ bao hàm phép đẳng cự Điều suy Bài tập Nếu f ∈ C1 ([a, b]) ∥f ∥Lip = ∥f ∥C1 Tính compact Lip(Ω) Định lý Cho Ω ⊂ Rn tập mở bị chặn, giả sử F = BLip(Ω) := {f ∈ Lip(Ω) : ∥f ∥Lip ≤ 1} Khi BLip(Ω) compact (Lip(Ω), ∥.∥∞ ) Chứng minh Ta cần F compact (C0 (Ω), ∥.∥∞ ) Áp dụng định lý Arzelà - Ascoli (Định lý 45) Chứng minh (i) F bị chặn (C0 (Ω), ∥.∥∞ ): hiển nhiên theo định nghĩa (ii) F đóng (C0 (Ω), ∥.∥∞ ): nghĩa là, (fh )h ⊂ F với ∥fh − f ∥∞ , f ∈ F Thật fh ∈ FLef trightarrow|fh (x)|+ |fh (y) − fh (z)| ≤1 y−z ∀h, x, y, z ∈ Ω với y ̸= z Lấy qua giới hạn, h → ∞, ta |f (x)| + |f (y) − f (z)| ≤1 y−z ∀x, y, z ∈ Ω với y ̸= z từ f ∈ F (iii) F liên tục Ω Thật vậy, đủ để nhận thấy rằng, theo định nghĩa |f (y) − f (z)| ≤ |y − z| ∀y, z ∈ Ω, f ∈ F Ta có điều phải chứng minh Nhận xét Chú ý BC1 (Ω) := {f ∈ C1 (Ω) : ∥f ∥C1 ≤ 1} không compact (C1 (Ω), ∥.∥∞ ) Đây đặc trưng tốt có Lip(Ω) khơng có C1 (Ω) Tính tách (Lip(Ω), ∥.∥Lip ) Định lý Cho Ω ⊂ Rn tập mở bị chặn Khi (Lip(Ω), ∥.∥Lip ) không tách Chứng minh Ta cần tồn họ tách rời không đếm {Uα : α ∈ I} tập mở (Lip(Ω), ∥.∥Lip ) (Mệnh đề ??) Ta chia chứng minh thành hai bước Bước 1: Giả sử n = Ω = (a, b) ta chứng minh kết luận Cho {uα : α ∈ (a, b)} ⊂ (Lip(a, b)) họ hàm uα (x) := |x − α| x ∈ (a, b), α ∈ I := (a, b) Ta chứng minh ∥uα − uβ ∥Lip ≥ Lip(uα − uβ ) ≥ α ̸= β (4) Thật  |uα (x) − uβ (x) − uα (y) + uβ (y)| Lip(uα − uβ ) = sup : x, y ∈ (a, b), x ̸= y |x − y| |uα (α) − uβ (α) − uα (β) + uβ (β)| |α − β| =2 = |α − β| |α − β|  ≥ Vì họ Uα := {f ∈ Lip((a, b)) : ∥f − uα ∥Lip < ∀α ∈ I} Ta điều mong muốn Bước 2: Giả sử Ω tập mở bị chặn Từ Ω mở, tồn hình cầu mở (a1 , b1 ) × · · · × (an , bn ) ⊂ Ω Cho {fα : α ∈ (a1 , b1 )} ⊂ Lip(Ω) họ hàm định nghĩa fα (x) := uα (x1 ) x = (x1 , x2 , , xn ) ∈ Ω, α ∈ I := (a1 , b1 ), uα hàm biến theo định nghĩa bước Theo (4) ta được, α ̸= β Lip(fα − fβ , Ω) ≥ Lip(uα − uβ , (a1 , b1 )) ≥ Vì vậy, họ Uα := {f ∈ Lip(Ω) : ∥f − fα ∥Lip < 1} ∀α ∈ I Ta điều cần chứng minh Ta xem xét lớp Lip(Ω) hàm liên tục Lipschitz f : Ω → R mà định nghĩa thỏa mãn ước lượng |f (x) − f (y)| < C|x − y| ∀x, y ∈ Ω (L) Với C > Giống hàm thỏa mãn (L), hàm thỏa mãn tính chất (H) quan trọng, hàm thỏa mãn tính chất (H) gọi hàm thỏa mãn điều kiện Holder với số mũ α |f (x) − f (y)| ≤ C|x − y|α ∀x, y ∈ Ω (H) với số C, α > Bài tập Cho Ω ⊂ Rn tập mở liên thông giả sử (H) với C > α > Khi f ≡ const Do điều kiện Holder khơng cịn ý nghĩa cho hàm với số mũ lớn tập mở liên thông Định nghĩa Cho A ⊂ Rn , hàm f : A → R gọi liên tục Holder với mũ α > thỏa mãn (H) với sô C > Không gian hàm Lipschitz Lip(Ω) Định nghĩa Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét Từ mệnh đề 42 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn 33 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  n n n−1 n−1 n−1 |SD | + |SD | + |U | + |U | = 2 ,j ,2 +j · 2n+1 1 = (2n+1 + 2n+1 + + 4) = + n n+1 4·2 2  =  Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ?? ta có |Ui,j | = Do 2n+1 i  2n li li+j r ,r s 0⩽l⩽ −1 i  Ui,j = Khi đó, theo Mệnh đề 19, ta có X X |CSD2n (rli )| + |CSD2n (x)| = 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 n−1 0⩽l⩽ 2i −1 )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n i |CSD2n (rli+j s)| n n x∈Ui,j X X |CSD2n (rli+j s)| n 0⩽l⩽ 2i −1 2n−1 i  − |R1 | + 2n |U n−1 | i ,li+j 2n 2n+1 (2n−1 + i + 2) 2n − 2n + = i i i  Do đó, theo Mệnh đề 19 ta có Pr(Ui,j , SD2n ) = = X 1 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i i+2 2n+1 (2n−1 + i + 2) 2n−1 + i + = = + n+1 n+1 2(n+1) i 2 i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề 32 34 Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi Pr(R1 , SD16 ) = 1 + = , Pr(R2 , SD16 ) = + = , 16 16 16 35 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) 1 = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + = ; 16 16 2+1 11 Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = + = , 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 11 Không gian hàm liên tục C0 (Ω) Định nghĩa 16 (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý 15 Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) khơng gian Banach vô hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ x∈Ω ∀h, k ≥ k 36 Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (20) Từ (16), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (21) Từ (17), lấy qua giới hạn (16), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa 17 Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vô hạn A có điểm giới hạn thuộc A 37 Nhận xét 10 Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng quát Định lý 16 (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập không gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hoàn toàn; (iv) A có tính chất BW Nhận xét 11 Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ 10 Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý 17 (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét 12 Định lý 44 cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) không thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa 18 Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý 18 (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); 38 (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục Hệ 11 Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ 12 Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý 19 Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 45 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý 43 ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N 39 Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (22) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (23) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x−y| < δ ⇒ |f (x)−f (y)| < ϵ, ∀f ∈ F (24) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N n [ K⊂ B(xi , σ) i=1 40 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ (25) B(yi , δ) i=1 Từ (18) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (21) (20) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k Nghĩa (gk )k dãy Cauchy (C0 (K), ∥.∥∞ ) Từ (C0 (K), ∥.∥∞ ) đầy đủ F đóng, suy tồn f ∈ F thỏa mãn lim ∥gk − f ∥∞ = k→∞ Từ (gk )k dãy dãy (fh )h , phải F compact dãy Sự cần thiết: Cần rằng, F compact (C0 (K), ∥.∥∞ ) ta có (i), (ii) (iii) Giả sử F compact không gian metric (C0 (K), ∥.∥∞ ), đó, theo tính chất tập compact khơng gian metric, F đóng bị chặn hồn tồn bị chặn Chỉ 41 F liên tục đều, nghĩa ta phải chứng minh (20) Theo phản chứng, giả sử ∃ϵ0 > : ∀ > 0, ∃fδ ∈ F, xδ , yδ ∈ K với |xδ −yδ | < δ |fδ (xδ )−fδ (yδ )| ≥ ϵ0 Chọn δ = 1/h ký hiệu fh := f1/h , xh := x1/h yh := y1/h Khi ta xây dựng ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K |xh − yh | < 1/h, |fh (xh ) − f (yh )| ≥ ϵ > 0, ∀h (26) Từ F K compact, tồn ba dãy (fh )h ⊂ F, (xh )h , (yh )h ⊂ K thỏa mãn lim xh = lim yh = z ∈ K fh → f ∈ F K h→∞ h→∞ Khi tồn lim fh (xh lim fh (yh ) = f (z) h→∞ h→∞ Lấy qua giới hạn (22) ta có mâu thuẫn Do đó, ta có điều phải chứng minh 12 Các khái niệm Định nghĩa 19 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép toán nhân phép toán nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 20 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép toán A) 42 Định nghĩa 21 Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa 22 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 12.0.1 Định lý đồng cấu vành Định nghĩa 23 Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo tồn hai phép tốn cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 12.0.2 13 Một số kết liên quan Không gian hàm Lipschitz Lip(Ω) Định nghĩa 24 Cho A ⊂ Rn (i) Hàm f : A ⊂ Rn → R gọi "Lipschitz" tồn số L>0 thỏa |f (x) − f (y)| ≤ L|x − y|, ∀x, y ∈ A Tập hợp hàm Lipschitz f : A ⊂ Rn → R ký hiệu Lip(A) 43 (ii) Cho f ∈ Lip(A) Một số không âm   |f (x) − f (y)| : x, y ∈ A, x ̸= y Lip(f ) = Lip(f, A) := sup |x − y| gọi số Lipschitz f Nhận xét 13 Định nghĩa hàm Lipschitz khái niệm metric Thật vậy, (X, d) (Y, ϱ) không gian metric, ánh xạ f : X → Y gọi Lipschitz có số L > thỏa mãn ϱ(f (x), f (y)) ≤ Ld(x, y), ∀x, y ∈ X Mệnh đề 12 Cho A ⊂ Rn f ∈ Lip(A) (i) f liên tục A; (ii) tồn f¯ : A → R với f |A = f Lip(f ) = Lip(f ) Nhận xét 14 Từ mệnh đề 42 suy f ∈ Lip(A), với A ⊂ Rn , ln có nghĩa hàm f : A → R ngược lại Hơn nữa, ánh xạ mở rộng E : Lip(A) → Lip(A), E(f ) := f song ánh Theo kết này, ta hiểu Lip(A) = Lip(A) Lưu ý tính chất mở rộng khơng cịn khơng gian C1 (Ω) Mệnh đề 13 Cho Ω ⊂ Rn tập lồi bị chặn Khi C1 (Ω) ⊂ Lip(Ω) Chứng minh Cho f ∈ C1 (Ω) Theo định lý giá trị trung bình ∀x, y ∈ Ω, ∃z ∈ xy := {tx + (1 − t)y : ≤ t ≤ 1} ⊂ Ω thỏa mãn f (x) − f (y) = (∇f (z), x − y)Rn Nghĩa |f (x) − f (y)| = |(∇f (z), x − y)Rn | ≤ sup(|∇f |)|x − y| = L|x − y|, ∀x, y ∈ Ω Ω Nhận xét 15 (i) không Ω không lồi

Ngày đăng: 03/07/2023, 08:50

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w