1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bất đẳng thức và phương pháp chứng minh

93 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BẤT ĐẲNG THỨC VÀ PHƯƠNG PHÁP CHỨNG MINH LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Trong năm gần Lý thuyết sóng nhỏ (Theory of Wavelets) phát triển mạnh mẽ, trở thành tảng cho việc xây dựng Lý thuyết truyền tin lí thuyết ứng dụng khác Không gian sở mà Lý thuyết xây dựng L (R), không gian hàm bình phương khả tích R Do phần tử thuộc L (R), biểu diễn qua sở nên người ta phải quan tâm đến sở không gian Trong số sở L (R) có loại sở đặc biệt sở wavelets trực chuẩn Luận văn giới thiệu loại sở wavelets trực chuẩn thường dùng đến sở Gabor sở Haar, hai sở cho nhiều ứng dụng 677 2 Các vành nhóm Ánh xạ ε : RG → R cho ε( X g rg g) = X rg ánh xạ mở rộng g Iđêan ∇(RG) = ker(ε) gọi iđêan mở rộng Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành iđêan mở rộng ∇(RG) ∆U -vành Chứng minh Đặt ∇ = ∇(RG) Giả sử G nhóm hữu hạn có cấp 1+2n R ∆U -vành Theo Mệnh đề 29, ta có ∈ ∆(R), 1+2n ∈ U (R) Khi RG có biểu diễn RG = ∇⊕H với H ∼ = R theo [4] Đặt ∇ = eRG H = (1 − e)RG Rõ ràng e phần tử tâm RG Nếu RG ∆U -vành, ∇ = eRG ∆U -vành theo Mệnh đề 30 Ngược lại, giả sử ∇ = eRG ∆U -vành Vì H ∼ = R nên H ∆U -vành Theo Bổ đề ??, RG ∆U -vành Một nhóm gọi hữu hạn địa phương nhóm sinh hữu hạn phần tử hữu hạn Bổ đề Nếu G 2-nhóm hữu hạn địa phương R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Chứng minh Giả sử G 2-nhóm hữu hạn địa phương R ∆U -vành ¯ Suy Khi R¯ := R/J(R) ∆U -vành Từ ∆(R) lũy linh, ∈ N (R) ¯ ⊆ N (RG) ¯ ¯ ∇(RG) theo [4, Hệ quả, trang 682] Do đó, ∇(RG) iđêan lũy ¯ linh chứa J(RG) Ta kiểm tra J(R)G ⊆ J(RG), J((R/J(R))G) ∼ = J(RG/J(R)G) = J(RG)/J(R)G Do ∇(RG) ⊆ J(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G 2-nhóm hữu hạn địa phương Nếu ∆(R) lũy linh, RG ∆U -vành Chứng minh Lấy u ∈ U (RG) Khi ε(u) = + ε(u − 1) ∈ U (R) theo Bổ đề (1) áp dụng cho ánh xạ mở rộng ε i Vì R ∆U -vành nên tồn j ∈ ∆(R) thỏa mãn ε(u) = + j Theo Bổ đề (1) ta có ε(u − + j) = hay u − + j ∈ ∇(RG) ⊆ ∆(RG) Do u ∈ − j + ∆(RG) suy u ∈ + ∆(RG) Hệ Cho R vành hồn chỉnh phải trái G 2-nhóm hữu hạn địa phương Khi đó, R ∆U -vành RG ∆U -vành Không gian hàm khả vi liên tục C1 (Ω) Định nghĩa Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f g= = Di f Ω, = Di f hiểu lớp đạo hàm ∂xi ∂xi riêng thứ i f i Ω (∃ (i)  C (Ω) :=  ∂f ∈ C0 (Ω), ∀i = 1, , n f ∈ C (Ω) : ∃ ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) khơng gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ khơng khơng gian Hilbert Xét ánh xạ tuyến tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (1) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập Cho (E, ∥.∥E ) (F, ∥.∥F ) không gian Banach Cho E × F với chuẩn ∥(x, y)∥E×F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥F ) khơng gian Banach Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hoàn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (2) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (3) Theo (??), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (??) Bài tập Chỉ (C1 (Ω), ∥.∥C1 ) không gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) khơng gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) khơng khơng gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 ); (iii) liên tục Ω Chứng minh Ta xét trường hợp n = Ω = (a, b) Sự cần thiết: Chỉ rằng, F compact (C1 (Ω), ∥.∥C1 ), (i), (ii) (iii) Cho T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Trong chứng minh định lý ?? ta tồn T −1 : (M, ∥.∥C0 (Ω)×C0 (Ω) ) → (C1 (Ω), ∥.∥C1 ) liên tục Do F compact (C1 (Ω), ∥.∥C1 ) tương đương với T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Giờ ta quan sát, xác biểu thị πi : C0 (Ω) × C0 (Ω) → C0 (Ω), (i = 1, 2) phép chiếu không gian tọa độ, nghĩa πi (f1 , f2 ) = fi (f1 , f2 ) ∈ C0 (Ω) × C0 (Ω), πi liên tục Từ F compact (C1 (Ω), ∥.∥C1 ), T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Điều có nghĩa π1 (T (F)) = F π2 (T (F)) = F ′ compact (C0 (Ω), ∥.∥C0 ) Theo định lý Arzelà - Ascoli ta (i), (ii), (iii) Tính đầy đủ: Chứng minh Bài tập F compact (C1 (Ω), ∥.∥C1 ), cho trước (i), (ii) (iii) Nhận xét Cho F = BC1 ([a,b]) := {f ∈ C1 ([a, b]) : ∥f ∥C1 = ∥f ∥∞ + ∥f ′ ∥∞ ≤ 1} Khi F khơng compact (C1 ([a, b]), ∥.∥C1 ) theo định lý Riesz’s (nhớ C1 ([a, b]) không gian vô hạn chiều) Nhưng F compact tương đối (C0 ([a, b]), ∥.∥∞ ), nghĩa là, ∀(fh )h ⊂ F tồn (fhk )k f ∈ C0 ([a, b]) thỏa mãn lim ∥fhk − f ∥∞ = k→∞ Tính tách (C1 (Ω), ∥.∥C1 ) Định lý (C1 (Ω), ∥.∥C1 ) tách Chứng minh Cho T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Vì T đồng phơi tính tách được bảo tồn qua phép đồng phơi, ta cần khơng gian (M, ∥.∥C0 (Ω)×C0 (Ω) ) khơng gian metric (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) tách Điều tính tách (C0 (Ω), ∥.∥∞ ) (Định lý 31), tập ?? từ tính chất tách qua giới hạn đến không gian (Xem định lý 30 (ii)) Các vành nhóm Ánh xạ ε : RG → R cho ε( X g rg g) = X rg ánh xạ mở rộng g Iđêan ∇(RG) = ker(ε) gọi iđêan mở rộng Định lý Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành iđêan mở rộng ∇(RG) ∆U -vành Chứng minh Đặt ∇ = ∇(RG) Giả sử G nhóm hữu hạn có cấp 1+2n R ∆U -vành Theo Mệnh đề 29, ta có ∈ ∆(R), 1+2n ∈ U (R) Khi RG có biểu diễn RG = ∇⊕H với H ∼ = R theo [4] Đặt ∇ = eRG H = (1 − e)RG Rõ ràng e phần tử tâm RG Nếu RG ∆U -vành, ∇ = eRG ∆U -vành theo Mệnh đề 30 Ngược lại, giả sử ∇ = eRG ∆U -vành Vì H ∼ = R nên H ∆U -vành Theo Bổ đề ??, RG ∆U -vành Một nhóm gọi hữu hạn địa phương nhóm sinh hữu hạn phần tử hữu hạn Bổ đề Nếu G 2-nhóm hữu hạn địa phương R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Chứng minh Giả sử G 2-nhóm hữu hạn địa phương R ∆U -vành ¯ Suy Khi R¯ := R/J(R) ∆U -vành Từ ∆(R) lũy linh, ∈ N (R) ¯ ⊆ N (RG) ¯ ¯ ∇(RG) theo [4, Hệ quả, trang 682] Do đó, ∇(RG) iđêan lũy ¯ Ta kiểm tra J(R)G ⊆ J(RG), linh chứa J(RG) J((R/J(R))G) ∼ = J(RG/J(R)G) = J(RG)/J(R)G Do ∇(RG) ⊆ J(RG) ⊆ ∆(RG) Định lý Cho R ∆U -vành G 2-nhóm hữu hạn địa phương Nếu ∆(R) lũy linh, RG ∆U -vành Chứng minh Lấy u ∈ U (RG) Khi ε(u) = + ε(u − 1) ∈ U (R) theo Bổ đề (1) áp dụng cho ánh xạ mở rộng ε i Vì R ∆U -vành nên tồn j ∈ ∆(R) thỏa mãn ε(u) = + j Theo Bổ đề (1) ta có ε(u − + j) = hay u − + j ∈ ∇(RG) ⊆ ∆(RG) Do u ∈ − j + ∆(RG) suy u ∈ + ∆(RG) Hệ Cho R vành hoàn chỉnh phải trái G 2-nhóm hữu hạn địa phương Khi đó, R ∆U -vành RG ∆U -vành Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (1) = Dn , CDn (ri ) = R1 , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − 73 (1) G = ∆(R) (2) R vành Jacobson lớn đóng với phép nhân phần tử quasi-invertible R (3) G nhóm lớn R phép cộng bao gồm phần tử quasi-invertible đóng với phép nhân phần tử quasi-invertible R 24.2 Mở rộng tốn tử ∆ cho vành khơng có đơn vị Bổ đề 12 Cho R vành không thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Mệnh đề 30 Cho R vành bất kỳ, ta có điều sau (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) khơng chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử unit regular khác không Hệ 41 Cho R vành có unit regular, ∆(R) = Hệ 42 Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Mệnh đề 31 Giả sử R vành 2-primal Khi ∆(R[x]) = ∆(R) + J(R[x]) 25 KHÔNG GIAN CÁC HÀM KHẢ TÍCH Định lý 45 Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp 74 Định nghĩa 18 Cho (X, τ ) khơng gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề 13 (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý 46 (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý 42 dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý 47 (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý 48 (Lusin - Dạng không gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ 75 Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); ∥f − s∥Lp < ϵ (32) (33) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý 43), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ (34) ∀x ∈ Ω (35) Từ (48) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (36) ∥sh − f ∥ ≤ 2f Ω, ∀h (37) Theo (49) (51), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = h→∞ (38) Cho ϵ > 0, từ (52), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (46) (47) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (46) (47), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (46) (47) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng 76 s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (39) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (40) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (41) ϵp 2p (42) Vì (55) (56) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (43) Thật vậy, ta giả sử rằng, từ (57), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (44) Từ định lý 42, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ (45) 77 Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (46) Do gợi ý (59) (60) ám (58) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (47) Theo (57) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (58) giữ Từ định lý 42, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (59) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (57) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý 31) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (48) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (49) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh 78 xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh , e g (x) := nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (63) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) Theo (62), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (50) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (64), suy |f1 (x)| < ϵ sup (51) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (64) (65) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ( max ) sup |f (x) − f1 (x)|, sup |f1 (x)| < ϵ x∈Ωh0 +1 \Ωh0 x∈Ωh0 Như (63) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) khơng tách Ta tìm họ rời khơng đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa n o Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < Chú ý a ∈ I := Ω 79 • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < 1 + = 2 Mặt khác ∥χωa − χωb ∥L∞ = a ̸= b, mâu thuẫn • I = Ω không đếm 26 ĐỊNH LÝ ROLLE Cơ sở định lý Rolle dựa hai định lý Weierstrass Fermat Định lý Weierstrass khẳng định hàm số f liên tục đoạn [a, b] bị chặn tồn giá trị lớn nhất, giá trị nhỏ đoạn Định lý Fermat điểm cực trị hàm khẳng định hàm f khả vi khoảng (a, b) đạt cực trị địa phương (cực đại địa phương cực tiểu địa phương) thuộc khoảng giá trị đạo hàm điểm cực trị địa phương không Định lý 49 (Định lý Rolle) Giả sử cho hàm số f liên tục [a, b], khả vi khoảng (a, b) f (a) = f (b) Khi tồn c ∈ (a, b) cho f ′ (c) = Chứng minh Vì f liên tục đoạn [a, b] Theo định lý Weierstrass hàm f phải tồn giá trị lớn giá trị nhỏ đoạn [a, b], nghĩa tồn x1 , x2 ∈ (a, b) cho f (x1 ) = f (x) = m, f (x2 ) = max f (x) = M [a,b] [a,b] Có hai khả xảy ra: 1) Nếu m = M Khi f (x) = const đoạn [a, b] Nên f ′ (c) = với 80 c ∈ (a, b) 2) Nếu m < M Theo giả thiết ta có f (a) = f (b) nên hai điểm x1 , x2 phải thuộc khoảng (a, b) Khơng tính tổng qt ta giả sử x1 ∈ (a, b) Theo định lý Fermat đạo hàm điểm không Định lý chứng minh xong Ý nghĩa hình học định lý Rolle Cho C đường cong trơn với hai đầu mút A, B có "độ cao" (trong hệ trục tọa độ Descartes) C tồn điểm mà tiếp tuyến C điểm song song với AB(hay song song với trục hồnh f (a) = f (b)) Hệ 43 Nếu hàm số f (x) có đạo hàm khoảng (a, b) phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) phương trình f ′ (x) = có n − nghiệm phân biệt thuộc khoảng (a, b) (Phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) với (k = 1, 2, , n)) Chứng minh Giả sử phương trình f (x) = có n nghiệm phân biệt thuộc khoảng (a, b) thứ tự x1 < x2 < < xn Khi ta áp dụng định lý Rolle cho n − đoạn [x1 , x2 ], [x2 , x3 ], , [xn−1 , xn ] phương trình f ′ (x) = có n − nghiệm thuộc n − khoảng (x1 , x2 ), (x2 , x3 ), , (xn−1 , xn ) Gọi n − nghiệm ξ1 , ξ2 , , ξn−1 ta có: f (ξ1 ) = f (ξ2 ) = = f (ξn−1 ) = Tiếp tục áp dụng định lý Rolle cho n−2 khoảng (ξ1 , ξ2 ), (ξ2 , ξ3 ), , (ξn−2 , ξn−1 ) phương trình f ′′ (x) = có n−2 nghiệm phân biệt khoảng (a, b) Tiếp tục trình sau k bước phương trình f (k) (x) = có n − k nghiệm phân biệt thuộc khoảng (a, b) Hệ 44 Giả sử hàm số f (x) liên tục đoạn [a, b] có đạo hàm khoảng (a, b) Khi phương trình f ′ (x) = có khơng n − 81 nghiệm phân biệt khoảng (a, b) phương trình f (x) = có khơng q n nghiệm phân biệt khoảng Chứng minh Giả sử phương trình f (x) = có nhiều n nghiệm phân biệt khoảng (a, b), chẳng hạn n + nghiệm Khi theo hệ phương trình f ′ (x) = có n nghiệm thuộc khoảng (a, b) Điều trái với giả thiết phương trình f ′ (x) = có khơng q n − nghiệm Ta có điều phải chứng minh 27 Khơng gian hàm khả vi liên tục C1 (Ω) Định nghĩa 19 Cho Ω ⊂ Rn tập mở (i) Cho f : Ω → R i = 1, , n, ta nói f liên tục khả vi cấp ∂f = Di f ∈ C0 (Ω)) có tồn g ∈ C0 (Ω) thỏa mãn ∂xi ∂f ∂f g= = Di f Ω, = Di f hiểu lớp đạo hàm ∂xi ∂xi riêng thứ i f i Ω (∃ (i) C (Ω) :=   ∂f ∈ C0 (Ω), ∀i = 1, , n f ∈ C (Ω) : ∃ ∂xi (iii) Cho f C1 (Ω) Ta biểu thị ∥f ∥C1 = ∥f ∥C1 ,Ω = X ∥Dα f ∥∞,Ω |α|≤1 ∥.∥C1 gọi chuẩn C1 Định lý 50 Cho Ω ⊂ Rn tập mở, bị chặn Khi (C1 (Ω), ∥.∥C1 ) khơng gian Banach vô hạn chiều, không không gian Hilbert Chứng minh Ta xét trường hợp n = Ω = (a, b) Đầu tiên ta phải đầy đủ không không gian Hilbert Xét ánh xạ tuyến 82 tính T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), T (f ) := (f, f ′ ) (52) ∥f, g∥C0 (Ω)×C0 (Ω) := ∥f ∥∞ + ∥g∥∞ (f, g) ∈ C0 (Ω) × C0 (Ω) Chú ý T đẳng cự, nghĩa ∥T (f )∥C0 (Ω)×C0 (Ω) = ∥f ∥C1 ∀f ∈ C1 (Ω) Đặc biệt, ta định nghĩa M := T (C1 (Ω)), ánh xạ T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) đẳng cự Bài tập 10 Cho (E, ∥.∥E ) (F, ∥.∥F ) khơng gian Banach Cho E ×F với chuẩn ∥(x, y)∥F = ∥x∥E + ∥y∥F Khi (E × F, ∥(x, y)∥F ) khơng gian Banach Do đó, ta phải M đóng (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ), để hoàn thành chứng minh Giả sử ((fh , fh′ ))h ⊂ M dãy mà lim ∥(fh − f, fh′ − g)∥C0 (Ω)×C0 (Ω) = h→∞ (53) với (f, g) ∈ C0 (Ω) × C0 (Ω chứng minh ∃f ′ = g [a, b] (54) 83 Theo (??), ta fh → f fh′ → g [a, b] hội tụ theo điểm Theo định lý tích phân cổ điển Z x fh′ (t)dt fh (x) − fh (a) = ∀x ∈ [a, b], ∀h, a ta lấy qua giới hạn, h → ∞, đồng thức trước theo (??) Bài tập 11 Chỉ (C1 (Ω), ∥.∥C1 ) không gian Banach, X ∥Dα u∥∞ ∥u∥C1 := |α|≤1 Ω ⊂ Rn tập mở bị chặn C1 (Ω) không gian vector vơ hạn chiều chứa tập hợp đa thức C1 (Ω) không không gian Hilbert Tính compact (C1 (Ω), ∥.∥C1 ) Định lý 51 Cho F ⊂ C1 (Ω) Fi := {Di f : f ∈ F}, i = 1, , n Khi F compact (C1 (Ω), ∥.∥C1 ) F Fi , với i = 1, , , n (i) Bị chặn (C0 (Ω), ∥.∥C0 ); (ii) đóng (C0 (Ω), ∥.∥C0 ); (iii) liên tục Ω Chứng minh Ta xét trường hợp n = Ω = (a, b) Sự cần thiết: Chỉ rằng, F compact (C1 (Ω), ∥.∥C1 ), (i), (ii) (iii) Cho T : (C1 (Ω), ∥.∥C1 ) → (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Trong chứng minh định lý ?? ta tồn T −1 : (M, ∥.∥C0 (Ω)×C0 (Ω) ) → (C1 (Ω), ∥.∥C1 ) 84 liên tục Do F compact (C1 (Ω), ∥.∥C1 ) tương đương với T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Giờ ta quan sát, xác biểu thị πi : C0 (Ω) × C0 (Ω) → C0 (Ω), (i = 1, 2) phép chiếu không gian tọa độ, nghĩa πi (f1 , f2 ) = fi (f1 , f2 ) ∈ C0 (Ω) × C0 (Ω), πi liên tục Từ F compact (C1 (Ω), ∥.∥C1 ), T (F) compact (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) Điều có nghĩa π1 (T (F)) = F π2 (T (F)) = F ′ compact (C0 (Ω), ∥.∥C0 ) Theo định lý Arzelà - Ascoli ta (i), (ii), (iii) Tính đầy đủ: Chứng minh Bài tập 12 F compact (C1 (Ω), ∥.∥C1 ), cho trước (i), (ii) (iii) Nhận xét 17 Cho F = BC1 ([a,b]) := {f ∈ C1 ([a, b]) : ∥f ∥C1 = ∥f ∥∞ + ∥f ′ ∥∞ ≤ 1} Khi F khơng compact (C1 ([a, b]), ∥.∥C1 ) theo định lý Riesz’s (nhớ C1 ([a, b]) không gian vô hạn chiều) Nhưng F compact tương đối (C0 ([a, b]), ∥.∥∞ ), nghĩa là, ∀(fh )h ⊂ F tồn (fhk )k f ∈ C0 ([a, b]) thỏa mãn lim ∥fhk − f ∥∞ = k→∞ Tính tách (C1 (Ω), ∥.∥C1 ) Định lý 52 (C1 (Ω), ∥.∥C1 ) tách Chứng minh Cho T : (C1 (Ω), ∥.∥C1 ) → (M, ∥.∥C0 (Ω)×C0 (Ω) ) ánh xạ định nghĩa (??) Vì T đồng phơi tính tách được bảo tồn qua phép đồng phôi, ta cần không gian 85 (M, ∥.∥C0 (Ω)×C0 (Ω) ) khơng gian metric (C0 (Ω) × C0 (Ω), ∥.∥C0 (Ω)×C0 (Ω) ) tách Điều tính tách (C0 (Ω), ∥.∥∞ ) (Định lý 31), tập ?? từ tính chất tách qua giới hạn đến không gian (Xem định lý 30 (ii)) 28 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa 20 Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hốn tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa 18 ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa 18 ta có bảng sau 86 Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s rs rs r2 s r3 s s r3 r r2 r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa 18 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 87 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa 18 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 Từ định nghĩa độ giao hoán tương đối ta có kết sau Mệnh đề 32 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C

Ngày đăng: 05/07/2023, 15:51

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN