Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 104 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
104
Dung lượng
572,78 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BẤT ĐẲNG THỨC VÀ PHƯƠNG PHÁP CHỨNG MINH LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Cùng với phát triển vượt bậc toán học ứng dụng, nhiều toán thực tế liên quan đến lý thuyết tối ưu, hệ phương trình địi hỏi cơng cụ giải tích khơng trơn mà cơng cụ giải tích cổ điển giải tích lồi khơng đáp ứng Gradient suy rộng, hay Dưới vi phân theo nghĩa Clarke, công cụ mạnh để xấp xỉ hàm Lipschitz mà dùng rộng rãi gần bốn thập kỷ qua Đây khái niệm mở rộng thực đạo hàm thông thường (trong trường hợp trơn) vi phân hàm lồi (trong trường hợp lồi) 34 2 Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i − 1 + n i = 2n−1 , 2 Pr(H, SD2n ) = + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề 37 ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề 38 ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸= = |SD2n | + |SD2n | + = n+1 +2 n+1 + 2n n−1 k − |R1 | k 2n 2n+1 (2n−1 + k) − 2n = k k Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n+1 (2n−1 + k) 2n−1 + k k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề 37, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề ?? ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)| 1 1 n+1 n | + |U n−1 | = |SD (2 + 4) = + 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề 37 ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề ?? ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1 n n n−1 n−1 n−1 |SD | + |U | + |SD | + |U | = 2 ,l ,l+2 · 2n+1 1 n+1 n+1 = + + + = + n n+1 4·2 2 = Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề 37, ta có 2n+1 2n+1 = n−1 = |Ui,j | = i Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề ?? ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1 n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 (2n+1 + 2n+1 + + 4) = + n = n+1 4·2 2 = Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề 37 ta có |Ui,j | = Do Ui,j = li r ,r li+j 2n+1 i n s ⩽ l ⩽ −1 i N |CN (y)| S∈G/N y∈S Áp dụng Bổ đề ?? từ suy X X X X |CH/N (S)| |CN (y)| |H||G| Pr(H, G) ⩽ |CH/N (yN )||CN (y)| = S∈G/N y∈S = X S∈G/N |CH/N (S)| S∈G/N X X |CS (x)| = x∈N |CH/N (S)| S∈G/N y∈S X |S ∩ CG (x)| x∈N Nếu S ∩ CG (x) ̸= ∅ tồn x0 ∈ S ∩ CG (x) S = N x0 Khi ta có S ∩ CG (x) = N x0 ∩ CG (x)x0 = (N ∩ CG (x))x0 = CN (x)x0 Từ suy |S ∩ CG (x)| = |CN (x)x0 | = |CN (x)| Nếu S ∩ CG (x) = ∅ rõ ràng = |S ∩ CG (x)| < |CN (x)| Do trường hợp ta có |S ∩ CG (x)| ⩽ |CN (x)| Từ suy X X X X |H||G| Pr(H, G) ⩽ |CH/N (S)| |S ∩ CG (x)| ⩽ |CH/N (S)| |CN (x)| S∈G/N x∈N S∈G/N = |H/N ||G/N | Pr(H/N, G/N )|N | Pr(N ) = |H||G| Pr(H/N, G/N ) Pr(N ) Do Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) x∈N 72 Cuối cùng, giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Khi đó, theo Bổ đề ?? ta có CH (y)N = CH/N (yN ) với y ∈ G N Theo lập luận ta có |H||G| Pr(H, G) = X |CH/N (S)| X |S ∩ CG (x)| x∈N S∈G/N Vì N ◁ G [N, G] ⩽ N Do từ giả thiết suy [N, G] = N ∩ [N, G] ⩽ N ∩ [H, G] = 1, hay N ⩽ Z(G) Từ suy CG (x) ∩ S = G ∩ S ̸= ∅ với x ∈ N với S ∈ G/N Do |S ∩ CG (x)| = |CN (x)| với x ∈ N Từ suy xảy dấu đẳng thức Trong trường hợp đặc biệt, tích trực tiếp ta có kết sau Mệnh đề 37 Cho N H hai nhóm, N1 H1 tương ứng nhóm N H Khi Pr(N1 × H1 , N × H) = Pr(N1 , N ) Pr(H1 , H) Chứng minh Giả sử x = (x1 , x2 ) ∈ N1 × H1 Khi CN ×H (x) = {(a1 , a2 ) ∈ N × H | (x1 , x2 )(a1 , a2 ) = (a1 , a2 )(x1 , x2 )} = {(a1 , a2 ) ∈ N × H | (x1 a1 , x2 a2 ) = (a1 x1 , a2 x2 )} Do |CN ×H (x)| = |CN (x1 )||CH (x2 )| Từ suy X x∈N1 ×H1 |CN ×H (x)| = X x1 ∈N1 |CN (x1 )| X x2 ∈H1 |CH (x2 )| 73 Áp dụng Mệnh đề ?? ta có Pr(N1 × H1 , N × H) = |N1 × H1 ||N × H| X |CN ×H (x)| x∈N1 ×H1 = X X |CN (x1 )| |CH (x2 )| |N1 ||H1 ||N ||H| = |N1 ||N | x1 ∈N1 X |CN (x1 )| x1 ∈N1 x2 ∈H1 X |CH (x2 )| |H1 ||H| x2 ∈H1 = Pr(N1 , N ) Pr(H1 , H) Vây ta có điều phải chứng minh Đặc biệt, ta có kết sau Hệ Cho H N hai nhóm Khi Pr(H, N × H) = Pr(H) Đối với tích nửa trực tiếp vấn đề tính độ giao hốn tương đối trở nên phức tạp nhiều Trong phần lại mục ta trường hợp đặc biệt Mệnh đề sau cho ta cơng thức tính độ giao hốn tương đối nhóm abel với tích nửa trực tiếp nhóm xiclíc cấp Mệnh đề 38 Cho A nhóm giao hốn, α tự đẳng cấu A cho α2 = idA C2 = ⟨u⟩ nhóm xiclíc cấp với u phần tử sinh Ký hiệu G = θ C2 tích nửa trực tiếp A nhóm xiclíc C2 = ⟨u⟩ với tác động θ : C2 → Aut(A) cho công thức θ(u) = α Khi Pr(A, G) = |Aα | + 2|A| Aα = {a ∈ A | α(a) = a} Chứng minh Giả sử x = (x1 , 1) ∈ A Khi ta có CG (x) = CA (x) ∪ CG\A (x) 74 Vì A nhóm giao hốn nên CA (x) = A Ta có CG\A (x) = {(a, u) ∈ G \ A | (x1 , 1)(a, u) = (a, u)(x1 , 1)} = {(a, u) ∈ G \ A | (x1 a, u) = (aθ(u)(x1 ), u)} = {(a, u) ∈ G \ A | (ax1 , u) = (aα(x1 ), u)} Ta xét hai trường hợp x1 sau Trường hợp 1: x1 ∈ Aα Khi aα(x1 ) = ax1 với a ∈ A Do |CG\A | = |A| Trường hợp 2: x1 ∈ A \ Aα Khi aα(x1 ) ̸= ax1 với a ∈ A Do CG\A = ∅, |CG\A | = Từ suy X X X X |CG (x)| = x∈A (|CA (x)| + |CG\A (x)|) = x∈A |CA (x)| + x∈A = |A| + X |CG\A (x)| + x∈Aα X |CG\A (x)| x∈A |CG\A (x)| x∈A\Aα = |A|2 + |A||Aα | + = |A|(|A| + |Aα |) Theo Mệnh đề ?? ta có Pr(A, G) = X |CG (x)| |A||G| x∈A = |A| |C2 | |A|(|A| + |Aα |) = |A| + |Aα | |Aα | = + 2|A| 2|A| Vậy ta có điều phải chứng minh 23 KHƠNG GIAN CÁC HÀM KHẢ TÍCH Định lý 29 Cho Ω ⊂ Rn tập mở Khi (Lp (Ω), ∥.∥Lp ) tách ≤ p < ∞ không tách p = ∞ Ta cần hai kết để chứng minh định lý ??: trước kết topo (Urysohn’s Lemma) sau quan hệ xấp xỉ không gian hàm liên tục Lp 75 Định nghĩa 18 Cho (X, τ ) không gian topo Khi C0c (X) := {f : X → R liên tục spt(f ) compact (X, d)} spt(f ) := Bao đóng{x ∈ X : f (x) ̸= 0} Bổ đề (Bổ đề Urysohn) Cho X compact địa phương không gian metric, cho K ⊂ X V ⊂ X , K compact V mở thỏa mãn K ⊂ V Khi đó, tồn hàm φ ∈ C0c (X) thỏa mãn ≤ φ ≤ 1, φ ≡ K spt(φ) ⊂ V Định lý 30 (Xấp xỉ Lp hàm liên tục) Cho Ω ⊂ Rn tập mở Khi C0c (Ω) trù mật (Lp (Ω), ∥.∥Lp ), biết ≤ p < ∞ Chứng minh định lý ?? dựa hai kết tảng xấp xỉ hàm đo được, ta cần nhớ lại Định lý 31 (Xấp xỉ hàm đơn giản) Cho (X, M) không gian đo cho f : X → [0, +∞] hàm đo Khi tồn dãy hàm đơn giản đo sh : X → [0, +∞], (h = 1, 2, ) thỏa mãn tính chất (i) ≤ s1 ≤ s2 ≤ ≤ sh ≤ ≤ f ; (ii) lim sh (x) = f (x), ∀x ∈ X h→∞ Z Đặc biệt, f ∈ L (X, µ), nghĩa f dµ < ∞, sh → f X L1 (X, µ), nghĩa Z ∥f − sh ∥L1 (X,µ) := |f − sh |dµ → X Định lý 32 (Lusin - Dạng khơng gian metric compact địa phương) Cho µ độ đo Radon compact địa phương, không gian metric tách X Cho f : X → R hàm đo cho tồn tập Borel A ⊂ X với µ(A) < ∞, f (x) = ∀x ∈ X \A |f (x)| < ∞ µ− hầu khắp nơi x ∈ X Khi đó, với ϵ > 0, tồn g ∈ C0c (X) cho µ({x ∈ X : f (x) ̸= g(x)}) < ϵ 76 Hơn nữa, g chọn cho supx∈X |g(x)| ≤ sup |f (x)| x∈X Chứng minh cho định lý Ta chia chứng minh định lý thành hai bước Bước 1: Ta chứng minh răng, ∀ϵ > 0, ∀f ∈ Lp (Ω) tồn hàm đơn giản đo s : Ω → R cho |{x ∈ Ω : s(x) ̸= 0} < ∞| (đặc biệt s ∈ Lp (Ω), ∀p ∈ [1, ∞]); ∥f − s∥Lp < ϵ (16) (17) Đầu tiên, giả sử f ≥ Ω Theo xấp xỉ hàm không âm đo phương pháp hàm đơn giản (Định lý ??), tồn dãy hàm đơn giản đo sh : Ω → [0, +∞], (h = 1, 2, ) cho ≤ s1 ≤ s2 ≤ ≤ sk ≤ ≤ f ; lim sh (x) = f (x) h→∞ (18) ∀x ∈ Ω (19) Từ (??) ta sh ∈ Lp (Ω) |s ∈ Ω : sh (x) ̸= 0| < ∞ ∀h, (20) ∥sh − f ∥ ≤ 2f Ω, ∀h (21) Theo (??) (??), ta cso thể áp dụng định lý hội theo Lebesgue, ≤ p < ∞, ta lim ∥sh − f ∥Lp = h→∞ (22) Cho ϵ > 0, từ (??), tồn h = h(ϵ) ∈ N cho ∥sh − f ∥Lp < ϵ Nếu ta định nghĩa s := sh , theo (??) (??) Trường hợp tổng quát f : Ω → R chứng minh tách f = + f − f − áp dụng (??) (??), tách thành f + f − Bước 2: Ta ∀ϵ > 0, ∀f ∈ Lp (Ω), ∃g ∈ C0c (Ω) cho ∥f −g∥Lp < ϵ ϵ Cho f hàm đơn giản đo thỏa mãn (??) (??) với ϵ ≡ ký hiệu A := {x ∈ Ω : s(x) ̸= 0} Giả sử ∥s∥∞ > 0, khơng 77 s ≡ ∈ C0c (Ω) kết thúc chứng minh Áp dụng định lý Lusin cho hàm s, tồn hàm g ∈ C0c (Ω) thỏa mãn |Ac | = |{x ∈ Ω : s(x) ̸= g(x)}| < ϵp , 4p ∥s∥p∞ (23) với |g(x)| ≤ ∥x∥∞ x ∈ Ω (24) Chú ý ∥f − g∥Lp ≤ ∥f − s∥Lp + ∥s − g∥Lp < Bây ta đánh giá ∥s − g∥Lp Z Z ∥s − g∥pLp = |s − g|p dx = Ω ϵ + ∥s − g∥Lp |s − g|p dx ≤ 2p ∥s∥p∞ |Aϵ | < Aϵ (25) ϵp 2p (26) Vì (??) (??) kết thúc chứng minh Chứng minh định lý ?? Ta cần chứng minh (C0c (Ω), ∥.∥∞ ) tách (27) Thật vậy, ta giả sử rằng, từ (??), ta (Lp (Ω), ∥.∥∞ ) tách được, biết ≤ p < ∞ Đầu tiên, giả sử Ω bị chặn Cho D ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm được, ta chứng minh D trù mật (Lp (Ω), ∥.∥Lp ) với ≤ p < ∞ (28) Từ định lý ??, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho ϵ ∥f − g∥Lp < D trù mật, tồn e g ∈ D cho ∥g − e g ∥∞ < ϵ 2|Ω|1/p Nhớ lại Bài tập 10 ∥f ∥Lp ≤ |Ω|1/p ∥f ∥∞ , ∀f ∈ L∞ (Ω), biết |Ω| < ∞ (29) 78 Điều nghĩa ϵ ∥g − g∥Lp ≤ |Ω1/p |∥g − g∥∞ < (30) Do gợi ý (??) (??) ám (??) Bây giả sử Ω không bị chặn Theo kết biết topo, tồn dãy (Ωh )h tập mở bị chặn cho Ωh ⊂ Ωh ⊂ Ωh+1 Ω= ∪∞ h=1 Ωh Hơn nữa, ý C0c (Ω) = ∪∞ h=1 Cc (Ωh ) (31) Theo (??) tồn tập Dh ⊂ (C0c (Ω), ∥.∥∞ ) trù mật đếm Cho D := ∪∞ h=1 Dh (??) giữ Từ định lý ??, ∀f ∈ Lp (Ω), ∀ϵ > 0, ∃g ∈ C0c (Ω) cho (??) Từ K := spt(g) tập compact chứa Ω, tồn h = h(g) = ϵ ∈ N cho K ⊂ Ωh Điều có nghĩa g ∈ C0c (Ωh ) ta có kết luận bước trước Bây ta chứng minh (??) Nhớ lại (C0 (K), ∥.∥∞ ) tách được, biết K ⊂ Rn tập compact (định lý 17) Cho (Ωh ) dãy tập mở bị chặn Rn Theo định nghĩa, C0c (Ωh ) ⊂ (C0 (Ω), ∥.∥∞ ) Vì (C0 (Ω), ∥.∥∞ ) tách nên với h, tồn tập D ⊂ (C0 (Ωh ), ∥.∥∞ ) trù mật đếm (32) Bây giờ, theo bổ đề Urysohn, ta sửa tập hợp hàm D eh ⊂ C0c (Ω) đẻ họ cho tập hợp hàm đếm D e D := ∪∞ h=1 Dh ⊂ (Cc (Ω), ∥.∥inf ty ) đếm trù mật (33) Áp dụng bổ đề Urysohn với K := Ωh−1 , V = Ωh cho φh ∈ C0 (Ω) cho ≤ φh (x) ≤ 1, ∀x ∈ Ω, φh (x) = 1, ∀x ∈ Ωh−1 spt(φh ) ⊂ Ωh 79 xác định g ∈ Dh , g : Ωh → R, định nghĩa e g : Ω → R hàm ( g(x) x ∈ Ωh , e g (x) := nếux ∈ Ω \ Ωh cho e := {φhe D g : g ∈ D} e (h ∈ N) D := ∪∞ h=1 D Ta chứng minh (??) Theo cách xây dựng, D đếm Vì ta cần chứng minh trù mật (C0c , ∥.∥∞ ) Sửa ϵ > 0, f ∈ C0c (Ω) cho K := spt(f ) ⊂ Ω compact Tồn h0 ∈ N cho K ⊂ Ωh0 ⊂ Ωh0 +1 Điều có nghĩa f ∈ C0c (Ωh0 ) ⊂ C0 (Ωh0 ) ⊂ C0 (Ωh0 +1 ) Theo (??), tồn f1 ∈ Dh0 +1 cho ∥f − f1 ∥∞,Ω := sup |f (x) − f1 (x)| < ϵ (34) x∈Ω Từ f ≡ Ωh0 +1 \ Ωh0 từ (??), suy |f1 (x)| < ϵ sup (35) x∈Ωh0 +1 \Ωh0 eh0 +1 , theo (??) (??) ta Bây ta định nghĩa f2 := φh0 +1 fe1 ∈ D ∥f − f2 ∥∞,Ω = sup |f (x) − f2 (x)| = x∈Ω sup |f (x) − φh0 +1 f (x)| ≤ x∈Ωh0 +1 ( max ) sup |f (x) − f1 (x)|, sup |f1 (x)| < ϵ x∈Ωh0 +1 \Ωh0 x∈Ωh0 Như (??) Cuối ta chứng minh (L∞ (Ω), ∥.∥L∞ ) không tách Ta tìm họ rời khơng đếm Ui : i ∈ I tập mở L∞ (Ω) Cho a ∈ Ω cho ωa := B(a, ) > với B(a, ) ⊂ Ω Định nghĩa n o Ua := f ∈ L∞ (Ω) : ∥f − χωa ∥L∞ < Chú ý a ∈ I := Ω 80 • Ua mở (L∞ (Ω), ∥.∥L∞ ), ∀a ∈ Ω: hiển nhiên • Ua ∩ Ub = ∅ a ̸= b, thật vậy, theo phản chứng, f ∈ Ua ∩ Ub , điều nghĩa ∥χωa − χωb ∥L∞ ≤ ∥χωa − f ∥L∞ + ∥f − χωb ∥L∞ < 1 + = 2 Mặt khác ∥χωa − χωb ∥L∞ = a ̸= b, mâu thuẫn • I = Ω không đếm 24 24.1 Một số đặc biệt hóa Jacobson vành Biểu diễn ∆(R) tính chất Trong mục này, khảo sát tập ∆(R) =: {r ∈ R|r+U (R) ⊆ U (R)} vành R Tập vành có quan hệ chặt chẽ với Jacobson R Ta ∆(R) vành Jacobson lớn R đóng với phép tốn nhân phần tử khả nghịch R Các tính chất ∆ cấu trúc vành nghiên cứu, trình bày số họ vành mà ∆(R) = J(R) Các phương pháp cấu trúc vành với ∆(R) ̸= J(R) mô tả Bổ đề Cho R vành bất kỳ, ta có (1) ∆(R) = {r ∈ R | ru + ∈ U (R), ∀u ∈ U (R)} = {r ∈ R | ur + ∈ U (R), ∀u ∈ U (R)}; (2) Với r ∈ ∆(R) u ∈ U (R), ur, ru ∈ ∆(R); (3) ∆(R) vành vành R; (4) ∆(R) idêan R ∆(R) = J(R); Y Y (5) Với họ vành Ri , i ∈ I , ∆( Ri ) = ∆(Ri ) i∈I i∈I 81 Chứng minh (1) Cho r ∈ ∆(R) u thuộc U (R), r + u ∈ U (R) tương đương ru−1 + ∈ U (R) tương đương u−1 r + ∈ U (R) (2) Ta có ruu′ + ∈ U (R), ∀u, u′ ∈ U (R) r ∈ ∆(R), suy ru ∈ ∆(R) Tương tự ur ∈ ∆(R) (3) Lấy r, s ∈ ∆(R) Khi −r + s + U (R) ⊆ −r + U (R) = −r − U (R) ⊆ U (R), hay ∆ nhóm với phép cộng R Hơn rs = r(s+1)−r ∈ ∆(R) r(s + 1) ∈ ∆(R) theo (2) (4) Rõ ràng J(R) ⊆ ∆(R) Ta giả sử ∆(R) iđêan R r ∈ R Khi rx + ∈ U (R), với x thuộc ∆(R) ∆(R) ⊆ J(R) hay ∆(R) = J(R) Chiều ngược lại dễ thấy Hệ 10 Cho R vành: (1) ∆(R) đóng với phép nhân phần tử lũy linh; (2) Nếu ∈ U (R), ∆(R) đóng với phép nhân phần tử lũy đẳng Định lý 33 Cho R vành có đơn vị T vành R sinh U (R) Khi đó: (1) ∆(R) = J(R) ∆(S) = ∆(R), với S vành R thỏa T ⊆ S ; (2) ∆(R) vành Jacobson lớn chứa R đóng với phép nhân phần tử khả nghịch R Chứng minh (1) T vành sinh U (R) nên T vành bao gồm tất tổng hữu hạn đơn vị R Do đó, theo (2) Bổ đề ??, ∆(T ) iđêan T Theo (4) Bổ đề ??, ∆(T ) = J(T ) Nếu r ∈ ∆(R), r + U (R) ⊆ U (R) Điều có nghĩa r biểu diễn thành tổng hai đơn vị Do r ∈ T , suy ∆(R) ⊆ T Giả sử S vành R thỏa mãn T ⊆ S Khi U (S) = U (R), ∆(S) = {r ∈ S | r + U (S) ⊆ U (S)} = {r ∈ S | r + U (R) ⊆ U (R)} = S ∩ ∆(R) = ∆(R), ∆(R) ⊆ T ⊆ S (2) Theo (1), ∆ vành Jacobson R theo Bổ đề ?? (2) ∆(R) đóng với phép nhân phần tử khả nghịch phía trái phải R 82 Bây giờ, ta giả sử S vành Jacobson chứa R đóng với phép nhân phần tử khả nghịch Nếu s ∈ S u ∈ U (R), su ∈ S = J(S) Do su quasi-regular S + su ∈ U (R) Theo Bổ đề ?? (1) s ∈ ∆(R) hay S ⊆ ∆(R) Hệ 11 Giả sử R vành mà phần tử biểu diễn thành tổng đơn vị Khi ∆(R) = J(R) Hệ 12 Giả sử R vành đại số trường F Nếu dimF R < |F |, ∆(R) vành lũy linh Mệnh đề 39 Giả sử R vành có đơn vị Khi (1) Cho S vành R thỏa U (S) = U (R) ∩ S Khi ∆(R) ∩ S ⊆ ∆(S) [ = U (R) ∩ ∆(R) [; (2) U (∆(R)) (3) Cho I iđêan R thỏa I ⊆ J(R) Khi ∆(R/I) = ∆(R)/I Chứng minh (1) suy từ định nghĩa ∆ (2) Nếu r ∈ ∆(R), v = + r ∈ U (R) v −1 = − rv −1 ∈ [ ∩ U (R), −rv −1 ∈ ∆(R), Bổ đề ?? ∆(R) [ = ∆(R), nghĩa ∆ Hệ 13 Cho R vành có đơn vị, ∆(∆(R)) tốn tử đóng Hệ 14 ∆(R) ∩ Z(R) ⊆ ∆(Z(R)) Hệ 15 Cho R vành (1) ∆(Tn (R)) = Dn (∆(R)) + Jn (R); (2) ∆(R[x]/(xn )) = ∆(R)[x]/(xn ); (3) ∆(R[[x]]) = ∆(R)[[x]] Hệ 16 Cho R vành, ∆(R) = J(R) ∆(R/J(R)) = Định lý 34 ∆(R) = J(R) R thỏa mãn điều kiện sau