Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 94 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
94
Dung lượng
572,71 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: ĐIỂM BẤT ĐỘNG CỦA ÁNH XẠ KHÔNG GIÃN VÀ ỨNG DỤNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Lịch sử bất đẳng thức bắt nguồn từ lâu xuyên suốt, thăng hoa qua thời gian cho tói tận ngày Có ba lí giải thích ln quan tâm tói bất đẳng thức Đó thực hành, lý thuyết, quan trọng thẩm mỹ - vẻ đẹp tồn mắt người quan tâm tói bất đẳng thức Trong vẻ đẹp xuyên qua lịch sử bất đẳng thức khơng thể khơng nhắc tới phận làm nên vẻ đẹp đó, bất đẳng thức tích phân Bất đẳng thức tích phân phần quan trọng tích phân có nhiều ứng dụng khơng tốn học mà cịn lĩnh vực khác Bất đẳng thức tích phân tốn khó thường xuất kì thi học sinh giỏi, Olympic tốn, Được hướng dẫn tận tình thầy TS Trần Thanh Tùng, tiếp cận hướng nghiên cứu chọn đề tài: “Bất đẳng thức Feng Qi dạng mở rộng” 158 2 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề 46 ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy ∼ R = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề 35 Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần tử khác không khả nghịch Lấy bất 0 − a 0 0 kỳ a ∈ R, a = ̸ 0, ta có X = ∈ Mn (R) X = 0 Do Mn (R) ∆U -vành, ta lấy X ∈ ∆(Mn (R)) Lấy phần tử khả nghịch 0 0 0 ∈ Mn (R) Khi In −U X = 0 a 0 0 khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể ∼ Tiếp theo, ta chứng minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy a 0 0 a 0 0 X= ∈ Mn (R) Khi X khả nghịch Vì Mn (R) 0 a 0 U = 0 0 0 0 1−a 0 − a ∆U -vành nên ta có In − X = ∈ ∆(Mn (R)) 0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2 1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết, ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2 X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) r m r : r ∈ R m ∈ M Mở rộng tầm thường T (R, M ) đẳng cấu với vành R M Hơn nữa, kiểm tra vành ma trận × R T (R, R) ∼ = R[x]/(x ) Theo Mệnh đề 57, có tập phần tử khả nghịch mở rộng tầm thường T (R, M ) T (U (R), M ), ∆(T (R, M )) = T (∆(R), M ) Morita context gồm thành phần A M N B A, B vành, B NA song mơđun, tồn tích context M ×N → A A M N × M → B với (ω, z) = ωz (z, ω) = zω , thỏa mãn vành A MB N B kết hợp với phép toán trên ma trận A M Morita context gọi tầm thường tích context N B tầm thường, nghĩa M N = N M = (xem [?], trang 1993) Ta có A M N B A M N B ∼ = T (A × B, M ⊕ N ) Morita context tầm thường theo [?] Định lý Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy a ¯= 0 + a m a ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy Hệ 1.Giả sửM (R, S) song mơđun Khi vành ma trận tam giác dạng R M S ∆U -vành R S ∆U -vành Hệ R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ Cấu trúc nhóm số nhóm hữu hạn Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm Dn có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ n, ⩽ l ⩽ n − 1, ⩽ i ⩽ n − 1, ⩽ j ⩽ n − Sau số tính chất nhóm nhị diện, xem [?] Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Rk nhóm xiclíc cấp n , d = (n, k), với ⩽ k ⩽ n; d (ii) Tl nhóm xiclíc cấp với ⩽ l ⩽ n − 1; (iii) Ui,j nhóm nhị diện cấp ⩽ j ⩽ n − 2n , d = (n, i), với i|n, ⩽ i ⩽ n− d Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ Khi (i) Nếu n lẻ CDn (ri ) = R1 , CDn (1) = Dn , CDn (rj s) = Tj với ⩽ i ⩽ n − 1, ⩽ j ⩽ n − 1; (ii) Nếu n chẵn CDn (1) = Dn , CDn (rm ) = Dn , CDn (ri ) = R1 , CDn (rj s) = Um,j n với m = , ⩽ i ⩽ n − 1, i ̸= m, ⩽ j ⩽ n − Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm nhóm Dn Khi H nhóm sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với k|n, ⩽ k ⩽ n, ⩽ l ⩽ n − 1, i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Cho nhóm quaternion suy rộng Q4n = ⟨r, s | r2n = 1, s2 = rn , s−1 rs = r−1 ⟩ với n ⩾ Ký hiệu Rk , Ui,j nhóm Q4n có dạng sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n, ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − Sau số tính chất nhóm quaternion suy rộng, xem [?] Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ Khi 2n , d = (2n, k), với ⩽ k ⩽ 2n; d 4n (ii) Ui,j nhóm quaternion suy rộng cấp , d = (n, i), d với ⩽ i ⩽ 2n, ⩽ j ⩽ 2n − (i) Rk nhóm xiclíc cấp Mệnh đề Cho nhóm Quaternion suy rộng Q4n với n ⩾ Khi CQ4n (1) = CQ4n (rn ) = Q4n , CQ4n (ri ) = R1 , CQ4n (rj s) = Un,j với ⩽ i ⩽ 2n − 1, i ̸= n, ⩽ j ⩽ 2n − Mệnh đề Cho nhóm quaternion suy rộng Q4n với n ⩾ 2, H nhóm Q4n Khi H nhóm sau Rk = ⟨rk ⟩, Ui,j = ⟨ri , rj s⟩ với k|2n, ⩽ k ⩽ 2n, ⩽ i ⩽ n, i|n, ⩽ j ⩽ i − Cho nhóm giả nhị diện n n−1 SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 −1 ⟩ với n ⩾ Ký hiệu Rk , Tl , Ui,j nhóm nhóm giả nhị diện SD2n có dạng sau Rk = ⟨rk ⟩, Tl = ⟨rl s⟩, Ui,j = ⟨ri , rj s⟩ với ⩽ k ⩽ 2n , ⩽ l ⩽ 2n − 1, ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − Sau số tính chất nhóm giả nhị diện, xem [?] Mệnh đề 10 Cho nhóm giả nhị diện SD2n với n ⩾ Khi (i) Rk nhóm xiclíc cấp 2n d = (2n , k), với ⩽ k ⩽ 2n ; d (ii) Tl nhóm xiclíc cấp l chẵn, cấp l lẻ với ⩽ l ⩽ 2n − 1; (iii) Ui,j nhóm giả nhị diện i lẻ với ⩽ i ⩽ 2n − 1, ⩽ j ⩽ 2n − 1; Ui,j nhóm nhị diện i chẵn j chẵn, nhóm quaternion tổng quát i chẵn j lẻ với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − 1; Với i = 2n−1 , Ui,j nhóm xiclíc cấp j lẻ, Ui,j ∼ = C2 × C2 j chẵn 2n+1 Trong tất trường hợp nhóm Ui,j có cấp d d = (2n , i) Mệnh đề 11 Cho nhóm giả nhị diện SD2n với n ⩾ Khi CSD2n (1) = CSD2n (r2 n−1 ) = SD2n , CSD2n (ri ) = R1 , với ⩽ i ⩽ 2n − 1, i ̸= 2n−1 , ⩽ j ⩽ 2n − CSD2n (rj s) = U2n−1 ,j 30 Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) khơng chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa Giả sử (X, τ ) khơng gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý 18 Giả sử (X, d) khơng gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi khơng gian (X, d) tách (X, d) tách (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách Mệnh đề 14 Giả sử (X, τ ) không gian topo Giả sử tồn họ {Ui : i ∈ I} thỏa mãn (i) Ui tập mở với i ∈ I ; (ii) Ui ∪ Uj = ∅ i ̸= j (iii) I khơng đêm 31 Khi (X, τ ) không tách Bài tập Giả sử l∞ := {x ∈ RN : sup |x(n)| < ∞} n∈N trang bị chuẩn ∥x∥l∞ := sup |x(n)| n∈N ∞ Hãy (l , ∥.∥l∞ ) không gian Banach không tách Gợi ý: Giả sử I = 2N := {x : N → {0, 1}} ⊂ l∞ 1 := y ∈ l∞ : ∥y − x∥l∞ < x ∈ I Ux = Bl∞ x, 2 Khi ta xét họ {Ux : x ∈ I} sử dụng mệnh đề ?? n o Định lý 19 Giả sử K ⊂ Rn tập compact Khi (C0 (K), ∥.∥∞ ) tách Chúng ta chứng minh cho trường hợp n = 1, K = [a, b] Trước ta cần phải nêu kết xấp xỉ quan trọng tốn giải tích Định lý 20 (Định lý xấp xỉ Weierstrass) Giả sử f ∈ C([a, b]) Khi tồn dãy hàm đa thức ph : R → R, (h = 1, 2, ) với hệ số thực, nghĩa ph ∈ R[x], thỏa mãn ph → f [a, b] Nhận xét Bởi đa thức hàm đơn giản nhất, máy tính trực tiếp đánh giá đa thức Định lý có ý nghĩa lý thuyết thực tiễn Đặc biệt nội suy đa thức Chứng minh định lý ?? Chúng ta cần kết n = K = [a, b] Giả sử D tập hợp hàm đa thức với hệ số hữu tỷ, nghĩa là, D := Q[x] Ta biết D đếm Chứng minh D trù mật C0 ([a, b]), ∥.∥∞ ) tức ∀f ∈ C0 ([a, b]), ∀ϵ > 0, ∃q ∈ D cho ∥f − q∥∞ ≤ ϵ 32 Từ định lý xấp xỉ Weierstrass, với ϵ > 0, tồn p ∈ R[x], nghĩa là, p(x) = αm xm + · · · + α1 x1 + α0 , với αi ∈ R, i = 0, 1, , m thỏa mãn ∥f − p∥∞ < ϵ (25) Định nghĩa q(x) := βm xm + · · · + β1 x1 + β0 với βi ∈ Q ϵ |αi − βi | < Pm i=0 c i , i = 0, 1, , m, c := max{|a|, |b|} Khi |p(x) − q(x)| ≤ m X i=0 ϵ |αi − βi ||x|i ≤ , ∀x ∈ [a, b] (26) Do đó, từ (??) (??) ta ∥f − q∥∞ ≤ ∥f − p∥∞ + ∥p − q∥∞ ≤ 10 ϵ ϵ + = ϵ 2 Các vành nhóm Ánh xạ ε : RG → R cho ε( X g rg g) = X rg ánh xạ mở rộng g Iđêan ∇(RG) = ker(ε) gọi iđêan mở rộng Định lý 21 Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành iđêan mở rộng ∇(RG) ∆U -vành Chứng minh Đặt ∇ = ∇(RG) Giả sử G nhóm hữu hạn có cấp 1+2n R ∆U -vành Theo Mệnh đề 47, ta có ∈ ∆(R), 1+2n ∈ U (R) Khi RG có biểu diễn RG = ∇⊕H với H ∼ = R theo [4] Đặt ∇ = eRG H = (1 − e)RG Rõ ràng e phần tử tâm RG Nếu RG ∆U -vành, ∇ = eRG ∆U -vành theo Mệnh đề 48 Ngược lại, giả sử ∇ = eRG ∆U -vành Vì H ∼ = R nên H ∆U -vành Theo Bổ đề 9, RG ∆U -vành Một nhóm gọi hữu hạn địa phương nhóm sinh hữu hạn phần tử hữu hạn 33 Bổ đề Nếu G 2-nhóm hữu hạn địa phương R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Chứng minh Giả sử G 2-nhóm hữu hạn địa phương R ∆U -vành ¯ Suy Khi R¯ := R/J(R) ∆U -vành Từ ∆(R) lũy linh, ∈ N (R) ¯ ⊆ N (RG) ¯ ¯ ∇(RG) theo [4, Hệ quả, trang 682] Do đó, ∇(RG) iđêan lũy ¯ linh chứa J(RG) Ta kiểm tra J(R)G ⊆ J(RG), J((R/J(R))G) ∼ = J(RG/J(R)G) = J(RG)/J(R)G Do ∇(RG) ⊆ J(RG) ⊆ ∆(RG) Định lý 22 Cho R ∆U -vành G 2-nhóm hữu hạn địa phương Nếu ∆(R) lũy linh, RG ∆U -vành Chứng minh Lấy u ∈ U (RG) Khi ε(u) = + ε(u − 1) ∈ U (R) theo Bổ đề ?? (1) áp dụng cho ánh xạ mở rộng ε i Vì R ∆U -vành nên tồn j ∈ ∆(R) thỏa mãn ε(u) = + j Theo Bổ đề ?? (1) ta có ε(u − + j) = hay u − + j ∈ ∇(RG) ⊆ ∆(RG) Do u ∈ − j + ∆(RG) suy u ∈ + ∆(RG) Hệ Cho R vành hồn chỉnh phải trái G 2-nhóm hữu hạn địa phương Khi đó, R ∆U -vành RG ∆U -vành 11 Nhóm đối xứng Trong mục chúng tơi tính tốn độ giao hốn tương đối nhóm thay phiên An nhóm đối xứng Sn Định nghĩa Cho n số nguyên dương Một phân hoạch n dãy không tăng số nguyên dương (k1 , k2 , , ks ) cho k1 + k2 + · · · + ks = n Từ Mệnh đề 23 ta có kết sau Mệnh đề 15 Với n ⩾ Pr(An , Sn ) = 2c(n) n! c(n) số lớp liên hợp Sn nằm An 34 Để tính c(n) ta cần kết sau Mệnh đề 16 Cho n số nguyên, n ⩾ 2, (k1 , k2 , , ks ) phân hoạch n Giả sử π ∈ Sn có kiểu (k1 , k2 , , ks ) Khi π ∈ An s + k X ki số chẵn i=1 Chứng minh Vì phép π có kiểu (k1 , k2 , , ks ) cho nên, theo Mệnh đề 33, ta có s P (ki +1) sign(π) = (−1)i=1 s+ = (−1) s P i=1 ki Từ suy điều phải chứng minh Trong ví dụ sau chúng tơi tính tốn giá trị Pr(An , Sn ) với ⩽ n ⩽ cách áp dụng Mệnh đề ?? Với n ⩾ 2, ta liệt kê tất phân hoạch n ứng với kiểu phép An Từ ta đếm c(n) tính Pr(An , Sn ) Ví dụ (i) Với n = ta có phân hoạch (1, 1) Do c(2) = Cho nên Pr(A2 , S2 ) = 2c(2) = 2! (ii) Với n = ta có phân hoạch (3), (1, 1, 1) Do c(3) = Cho nên Pr(A3 , S3 ) = 2c(3) = 3! (iii) Với n = ta có phân hoạch (3, 1), (2, 2), (1, 1, 1, 1) Do c(4) = Cho nên Pr(A4 , S4 ) = 2c(4) = 4! (iv) Với n = ta có phân hoạch (5), (3, 1, 1), (2, 2, 1), (1, 1, 1, 1, 1) 35 Do c(5) = Cho nên Pr(A5 , S5 ) = 2c(5) = 5! 15 (v) Với n = ta có phân hoạch (5, 1), (4, 2), (3, 3), (3, 1, 1, 1), (2, 2, 1, 1), (1, 1, 1, 1, 1, 1) Do c(6) = Cho nên Pr(A6 , S6 ) = 2c(6) = 6! 60 (vi) Với n = ta có phân hoạch (7), (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 1, 1, 1, 1), (2, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1) Do c(7) = Cho nên Pr(A7 , S7 ) = 12 2c(7) = 7! 315 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề 17 Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R)) Chứng minh Giả sử R ∆U -vành, lấy u, v ∈ U (R), ta có + u ∈ ∆(R) − v ∈ ∆(R), u + v = (1 + u) − (1 − v) ∈ ∆(R) hay U (R) + U (R) ⊆ ∆(R) Ngược lại, giả sử U (R) + U (R) ⊆ ∆(R), suy U (R) + U (R) = ∆(R) (vì ∆(R) ⊂ U (R) + U (R)) hay + ∆(R) = U (R) Vậy R ∆U -vành 36 Mệnh đề sau trình bày số tính chất ∆U -vành Mệnh đề 18 Cho R ∆U -vành Khi (1) ∈ ∆(R); (2) Nếu R thể, R ∼ = F2 ; (3) Nếu x2 ∈ ∆(R) x ∈ ∆(R) (do N (R) ⊆ ∆(R)); (4) R hữu hạn Dedekind; (5) Cho I ⊆ J(R) iđêan R Khi R ∆U -vành R/I ∆U -vành; Y (6) Vành Ri ∆U vành Ri ∆U , với i ∈ I i∈I (7) Nếu T vành R thỏa mãn U (T ) = U (R) ∩ T , T ∆U -vành Cụ thể áp dụng cho Z = Z(R) tâm R Chứng minh (1) Từ Mệnh đề 46 ta dễ dàng suy ∈ ∆(R) (2) Nếu R thể ∆(R) = Vì R U J -vành nên ta suy ∼ R = F2 (3) Giả sử x2 ∈ ∆(R) Khi (1+x)(1−x) = (1−x)(1+x) = 1−x2 ∈ U (R) tức 1+x ∈ U (R) Vì R ∆U -vành nên 1+x ∈ 1+∆(R), x ∈ ∆(R) (4) Giả sử a, b ∈ R với ab = Khi phần tử − ba lũy đẳng R, [b(1 − ba)]2 = = [(1 − ba)a]2 ∈ ∆(R) Từ (3), ta có b(1 − ba) ∈ ∆(R) (1 − ba)a ∈ ∆(R) Suy − ba = (1 − ba)2 = [(1 − ba)a][b(1 − ba)] ∈ ∆(R) Từ đó, ba ∈ U (R) ba = (5) Nếu I ⊆ J(R) iđêan, ∆(R/I) = ∆(R)/I theo Mệnh đề 35 Giả sử R ∆U -vành Khi đó, u + I ∈ U (R/I), ta có u ∈ U (R) u ∈ + ∆(R) Suy u + I ∈ + ∆(R)/I = + ∆(R/I) Do R/I ∆U -vành Ngược lại, giả sử R/I ∆U -vành Lấy u ∈ U (R) tùy ý Khi u + I ∈ + ∆(R)/I Ta kiểm tra u ∈ + ∆(R) Do đó, R ∆U -vành 37 (6) Hiển nhiên (7) Từ giả thiết U (T ) = U (R) ∩ T suy ∆(R) ∩ T ⊆ ∆(T ) Bây U (R) = + ∆(R) cho + ∆(T ) ⊆ U (T ) = U (R) ∩ T = (1 + ∆(R)) ∩ T = + (∆(R) ∩ T ) ⊆ + ∆(T ) suy + ∆(T ) ⊆ U (T ) hay T ∆U -vành Định lý 23 Vành ma trận Mn (R) ∆U -vành n = R ∆U -vành Chứng minh (⇐:) Hiển nhiên (:⇒) Giả sử Mn (R) ∆U -vành n > Đầu tiên ta chứng minh R thể, tức phần tử khác không khả nghịch Lấy bất 0 − a 0 0 kỳ a ∈ R, a = ̸ 0, ta có X = ∈ Mn (R) X = 0 Do M n (R) ∆U -vành,ta lấy X ∈ ∆(Mn (R)) Lấy phần tử khả nghịch 0 1 0 0 0 0 0 U = ∈ Mn (R) Khi In −U X = 0 0 0 a khả nghịch Mn (R), hay a ∈ U (R) Do đó, R thể ∼ Tiếp theo, ta chứng minh R = F2 Lấy a ∈ R, a ̸= a ̸= Lấy a 0 0 a 0 0 X= ∈ Mn (R) Khi X khả nghịch Vì Mn (R) 0 a 38 1−a 0 − a ∆U -vành nên ta có In − X = ∈ ∆(Mn (R)) 0 − a Vì − a khả nghịch nên In − X khả nghịch, mâu thuẫn Do R∼ = F2 1 X1 Cuối cùng, ta n = Lấy X1 = X = ∈ 0 In−2 Mn (R) Khi X khả nghịch Mn (R) Bởi giả thuyết, ta có X2 In − X ∈ ∆(Mn (R)) Mặt khác, ta có In − X = In−2 X2 = Suy In − X khả nghịch, mâu thuẫn Do đó, n = 1 R ∼ = M1 (R) ∆U -vành Mệnh đề 19 Giả sử R ∆U -vành e phần tử lũy đẳng R Khi eRe ∆U -vành Chứng minh Lấy u ∈ U (eRe) Khi u + − e ∈ U (R) Vì R ∆U -vành nên ta có u − e ∈ ∆(R) Ta chứng minh u − e ∈ ∆(eRe) Lấy tùy ý v khả nghịch eRe Rõ ràng v + − e ∈ U (R) Vì u − e ∈ ∆(R) nên u−e+v+1−e ∈ U (R) theo định nghĩa ∆, đặt u−e+v+1−e = t ∈ U (R) Ta kiểm tra et = te = ete = u − e + v , ete ∈ U (eRe) Suy u − e + U (eRe) ⊆ U (eRe), u − e ∈ ∆(eRe) Vì vậy, u ∈ e + ∆(eRe) hay eRe ∆U -vành Cho R vành M song môđun vành R Một mở rộng tầm thường R M T (R, M ) = {(r, m) : r ∈ R m ∈ M }, với phép cộng theo thành phần phép nhân định nghĩa (r, m)(s, n) = (rs, rn + ms) 39 r m r : r ∈ R m ∈ M Mở rộng tầm thường T (R, M ) đẳng cấu với vành R M vành ma trận × Hơn nữa, kiểm tra R T (R, R) ∼ = R[x]/(x2 ) Theo Mệnh đề 57, có tập phần tử khả nghịch mở rộng tầm thường T (R, M ) T (U (R), M ), ∆(T (R, M )) = T (∆(R), M ) Morita context gồm thành phần A M N B A, B vành, B NA song mơđun, tồn tích context M ×N → A A M N × M → B với (ω, z) = ωz (z, ω) = zω , thỏa mãn vành A MB N B kết hợp với phép toán trên ma trận A M Morita context gọi tầm thường tích context N B tầm thường, nghĩa M N = N M = (xem [?], trang 1993) Ta có A M N B A M N B ∼ = T (A × B, M ⊕ N ) Morita context tầm thường theo [?] Định lý 24 Cho M (R, R) song môđun Vành R ∆U -vành T (R, M ) ∆U -vành u m Chứng minh (:⇒) Lấy u¯ = ∈ U (T (R, M )) = T (U (R), M ), u u ∈ U (R) m ∈ M Ta u¯ − ∈ ∆(T (R, M )) Rõ ràng, u ∈ U (R) u = + a ∈ + ∆(R) với a thuộc ∆(R) Suy a ¯= 0 + a m a ∈ T (∆(R), M ) = ∆(T (R, M )) Vì T (R, M ) ∆U -vành (⇐:) Điều ngược lại dễ thấy 40 Hệ 8.Giả sửM (R, S) song mơđun Khi vành ma trận tam giác dạng R M S ∆U -vành R S ∆U -vành Hệ R ∆U -vành vành ma trận tam giác Tn (R) ∆U -vành, n ≥ 13 Mở rộng tốn tử ∆ cho vành khơng có đơn vị Bây ta thay đổi định nghĩa ∆ để làm việc vành khơng chứa đơn vị Cụ thể, xét tập ∆◦ (R) = {r ∈ R|r + U◦ (R) ⊆ U◦ (R)} Khi R vành có đơn vị ∆◦ (R) = ∆(R) Với vành R bất kỳ, không thiết phải có đơn vị Ta ký hiệu R1 vành bao gồm R đơn vị Z Khi đó, U◦ (Z) = Ta dễ dàng kiểm tra bổ đề sau Bổ đề Cho R vành, khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Bổ đề rằng, ta mở rộng định nghĩa ∆ cho tất vành, khơng thiết phải có đơn vị khẳng định Định lý 44 tương đương với vành tùy ý Hơn nữa, điều kiện tương đương đúng, ∆(∆(R)) = ∆(R) Ta biết kết cổ điển Jacobsson J(R) vành J(eRe) = eJ(R)e, với e lũy đẳng R Ta dấu khơng cịn trường hợp tổng quát ∆(R) Tuy nhiên quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) giữ với giả thiết e∆(R)e ⊆ ∆(R) Trong Hệ ta thêm vào giả thiết ∈ U (R) Cho R vành có đơn vị Phần tử a ∈ R gọi quy (tương ứng, quy đơn vị) R a = aua với u ∈ R (tương ứng, u ∈ U (R)) Nếu phần tử vành R quy (tương ứng, quy đơn vị) R gọi vành quy (tương ứng, vành quy đơn vị) Mệnh đề 20 Cho R vành bất kỳ, ta có (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) 41 (2) ∆(R) không chứa phần tử lũy đẳng khác không (3) ∆(R) khơng chứa phần tử quy đơn vị khác không Chứng minh (1) Nếu y ∈ U (eRe), y1 = y + (1 − e) ∈ U (R) thỏa mãn y = ey1 e Ta lấy r ∈ e∆(R)e ⊆ ∆(R) ta phần tử khả nghịch y ∈ U (eRe) ta có e − yr ∈ U (eRe) Như trên, lấy y1 = y+1−e ∈ U (R) Từ r ∈ e∆(R)e ⊆ ∆(R), ta 1−y1 r ∈ U (R) Do tồn phần tử b ∈ R thỏa mãn b(1 − y1 r) = e = eb(1 − y1 r)e = eb(e − y1 re)e = eb(e − (y + − e)re) = eb(e − yre) + eb(1 − e)re = ebe(e − yre), dấu cuối r ∈ eRe Điều cho thấy e − yre = e − yr phần tử khả nghịch trái eRe Từ − y1 r ∈ U (R) ta có (1 − y1 r)b = = (1 − (y + − e)r)b = (1 − yr)b Nhân hai vế với e ta e = e(1 − yr)be = (e − yr)be = (e − yr)ebe Điều có nghĩa ebe phần tử khả nghịch phải trái e − yr (2) Nếu e2 = e ∈ ∆(R), − e = e + (1 − 2e) ∈ U (R), − 2e khả nghịch, e = (3) Nếu a ∈ ∆(R) phần tử quy đơn vị, tồn phần tử khả nghịch u ∈ U (R) thỏa mãn au lũy đẳng Theo điều kiện (2) ta suy a phải không Hệ 10 Cho R vành quy đơn vị, ∆(R) = Hệ 11 Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Dưới số ví dụ mà ∆(R) ̸= J(R) Ví dụ (1) Ở Định lý 44, ta nhận thấy A vành vành R thỏa mãn U (R) = U (A), J(A) ⊆ ∆(R) Cụ thể chọn A miền giao hoán với J(A) ̸= R = A[x], ta = J(R) ⊂ J(A) ⊆ ∆(R) (xem [?], Bài tập 4.24) (2) ([?], Ví dụ 2.5) Cho R = F2 < x, y > / < x2 > Khi J(R) = U (R) = + F2 x + xRx Cụ thể, F2 x + xRx chứa ∆(R) J(R) = (3) Cho S vành tùy ý thỏa mãn J(S) = ∆(S) ̸= cho R = M2 (S) Khi đó, theo Định lý (1), ∆(R) = J(R) = 0, đó, 42 e = e11 ∈ R, e∆(R)e = eJ(R)e = J(eRe) = ∆(eRe) ≃ ∆(S) ̸= Điều quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) Mệnh đề 53 nghiêm ngặt trường hợp tổng quát (4) Cho A miền giao hoán với J(A) ̸= S = A[x] Khi đó, theo (1), ̸= J(A) ⊆ ∆(S) rõ ràng J(S) = R = M2 (S), A miền giao hốn địa phương Theo Định lý 7, ∆(R) = J(R) = Lưu ý, tâm Z = Z(R) R = M2 (S) đẳng cấu với S U (Z) = U (R) ∩ Z Do đó, = ∆(R) ∩ Z ⊆ ∆(Z) ≃ J(A) ̸= Do đó, quan hệ bao hàm Hệ nghiêm ngặt J(R) = = J(Z(R)) Một vành R gọi 2-nguyên thủy tập phần tử lũy linh N (R) trùng với nguyên tố B(R), tức R/B(R) vành rút gọn Mệnh đề 21 Giả sử R vành 2-nguyên thủy Khi ∆(R[x]) = ∆(R)+ J(R[x]) Chứng minh Trước tiên ta giả sử R vành rút gọn Khi theo Hệ 36 ta có U (R[x]) = U (R) Do đó, theo định nghĩa ∆(R[x]), ta có ∆(R) ⊆ ∆(R[x]) Lấy a + a0 ∈ ∆(R[x]) a ∈ R[x]x a0 ∈ R Khi đó, u ∈ U (R), a + a0 + u ∈ U (R) Ta có a0 + u ∈ U (R) a = ∆(R) = ∆(R[x]) Bây ta giả sử R vành 2-nguyên thủy Rõ ràng B(R[x]) = B(R)[x] ⊆ J(R[x]) R vành 2-nguyên thủy R/B(R) vành rút gọn J(R[x]) = B(R[x]) = B(R)[x] Áp dụng phần đầu chứng minh cho R/B(R) Mệnh đề 35 (2) ta có ∆(R) + B(R)[x] = ∆(R/B(R)[x]) = ∆(R[x]/J(R[x])) = ∆(R[x])/J(R[x]) Ta có điều cần chứng minh 14 Nhóm nhị diện Mệnh đề 22 Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi 43 (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) = n+k n n lẻ, n chẵn k ∤ , 2n n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) = n+1 n lẻ, 2n n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) = n+i+2 4n n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề ?? ta có |Rk | = Do k Rk = ⟨r ⟩ = n n = (n, k) k