1. Trang chủ
  2. » Khoa Học Tự Nhiên

một số đề tham khảo xác suất thống kê

13 3,5K 5

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 13
Dung lượng 191 KB

Nội dung

Gia đình có con thứ hai là trai biết rằng họ có ít nhất một con gái Câu 2: Đường kính của một loại trục máy do máy tiện ralà một đại lượng ngẫu nhiên có phân phối chuẩn với trung bình l

Trang 1

MỘT SỐ ĐỀ THI THAM KHẢO

1/ ĐỀ THI

Câu 1: Ta xét các gia đình có hai con Khả năng sinh con gái trong mỗi lần sinh là 0,51; các

lần sinh độc lập Tìm xác suất để khi chọn ngẫu nhiên một gia đình trong số các gia đình có hai con ta được:

a Gia đình có con gái đầu và con trai thứ hai

b Gia đình có con trai thứ hai biết rằng đứa thứ nhất là gái

c Gia đình có con thứ hai là trai biết rằng họ có ít nhất một con gái

Câu 2: Đường kính của một loại trục máy do máy tiện ralà một đại lượng ngẫu nhiên có phân

phối chuẩn với trung bình là 25mm và độ lệch chuẩn 1,2mm Trục máy được gọi là đạt tiêu chuẩn kỹ thuật nếu đường kính nằm trong khoảng từ 23,44mm đến 26,56mm Cho máy sản xuất 100 trục Tính xác suất để trong 100 trục đó có:

a 79 trục đạt tiêu chuẩn kỹ thuật?

b Không quá 90 trục đạt tiêu chuẩn kỹ thuật?

Câu 3: Điều tra về năng suất lúa ở một vùng trong vụ lúa hè thu năm 2005, người ta thu được

các số liệu sau:

a Những thửa ruộng có năng suất trên 6tấn/ha là những thửa ruộng có năng suất cao Ước lượng diện tích lúa có năng suất cao ở vùng này, với độ tin cậy 96% Biết rằng diện tích lúa gieo tròng ở vùng này là 8000ha

b Ước ượng năng suất lúa trung bình trong vụ hè thu ở vùng này với độ tin cậy 99%? Năng suất lúa trung bình trong vụ hè thu năm 2004 ở vùng này là 5 tấn/ha Vụ hè thu năm 2005 người ta áp dụng một biện pháp kỹ thuật mới Hãy cho nhận xét về tác dụng của biện pháp kỹ thuật mới này, với mức ý nghĩa 5%

2/ ĐỀ THI

Câu 1: Có 5 máy sản xuất một loại sản phẩm: trong đó có 3 máy loại 1, 2 máy loại 2 Tỷ lệ

sản phẩm loại A do máy loại 1 sản xuất ra là 0,8; do máy loại 2 sản xuất là 0,6

Chọn ngẫu nhiên một máy rồi từ máy đó sản xuất ra 100 sản phẩm

a Tính xác suất để có ít nhất 70 sản phẩm sản xuất ra là sản phẩm loại A?

b Giả sử được ít nhất 70 sản phẩm loại A, theo bạn các sản phẩm đó do máy nào sản xuất?

Câu 2: Gọi X là số lần mặt nhất xuất hiện sau 3 lần tung một con xúc xắc

a Lập bảng phân phối xác suất của X

b Tính (P X 0), (P X 1), (P X 2)

c Tính E(X), D(X)

Câu 3: Tuổi thọ của một loại bóng đèn được biết theo quy luật với độ lệch chuẩn 100 giờ

a Chọn ngẫu nhiên 100 bóng đèn để thử nghiệm, thấy mỗi bóng tuổi thọ trung bình là

1000 giờ Hãy ước lượng tuổi thọ trung bình của bóng đèn với độ tin cậy 95%

b Với độ chính xác là 15 giờ Hãy xác định độ tin cậy

c Với độ chính xác là 25 giờ và độ tin cậy 95% thì cần thử nghiệm bao nhiêu bóng

Câu 4: Điều tra năng suất lúa trên diện tích 100ha trồng lúa của một vùng, ta thu được bảng số

liệu sau:

Năng suất

(tạ/ha)

Hãy ước lượng năng suất lúa trung bình của vùng đó với độ tin cậy 95%?

Trang 2

Những thửa ruộng có năng suất từ 58tạ/ha trở lên là những thửa có năng suất cao Hãy ước lượng tỷ lệ diện tích có năng suất cao trong vùng với độ tin cậy 97%

3/ ĐỀ THI

Cu 1: Nhà nước phát hành 5 loại trái phiếu(TP) với số lượng: số TPI gấp 3 số TP II, số TP II gấp 2 số TP III, số TP III và TP IV bằng nhau, số TP V bằng số TP IV Cho biết tỷ lệ trúng thưởng của 5 loại TP này lần lượt là: 0,009; 0,01; 0,018; 0,012; 0,015 Chọn ngẫu nhiên một người mua tri phiếu

a Tính xác suất để người này trúng thưởng

b Giả sử đ tìm được một người trúng thưởng Cho biết khả năng trúng thưởng này rơi vào loại TP nào nhiều nhất

Cu 2: Một nhn vin của hng nhận về hai kiện sản phẩm Kiện thứ nhất cĩ 6 sản phẩm loại tốt v 4 thứ phẩm; kiện thứ hai cĩ 5 sản phẩm loại tốt v 3thứ phẩm Nhn vin ny lấy ra ngu nhin 3 sản phẩm từ kiện thứ nhất v 2 sản phẩm từ kiện thứ hai để trưng bày

a Tìm luật phn phối xc suất của số sản phẩm loại tốt trong 5 sản phẩm được trưng by Tính số sản phẩm tốt trung bình v số sản phẩm tốt tin chắc cĩ trong năm sản phẩm được trưng bày

b Sau khi chọn 5 sản phẩm trưng bày, nhân viên này mang tất cả số sản phẩm cịn lại trong hai kiện đổ chung vào một chỗ Một khách hàng chọn mua ngẫu nhiên 2 sản phẩm từ số sản phẩm cịn lại ny Tính xc suất để khách hàng chọn mua được 2 sản phẩm loại tốt

Cu 3: Điều tra chỉ số chứng khoán Down Jone (DJ Index tính bằng %) trên thị trường chứng khoán NewYork (NYSE) kết quả được cho trong bảng sau:

a Hy ước lượng trung bình chỉ số DJ với độ tin cậy 97%

b Nếu muốn ước lượng trung bình chỉ số DJ với độ tin cậy 99% và độ chính xác 1% thì cần điều tra thêm bao nhiêu phiên giao dịch nữa?

c Những phiên giao dịch có chỉ số DJ không quá 13% được gọi là loại hai Hy ước lượng

tỷ lệ chỉ số DJ loại hai với độ tin cậy 96%

Cĩ ti liệu nĩi rằng tỷ lệ chỉ số DJ loại hai l 40% Hy xem tỷ lệ trong ti liệu ny cao hơn so với thực tế hay không kết luận với mức ý nghĩa 5%?

4/ ĐỀ THI

Cu 1: Có 3 máy, cho mỗi máy sản xuất một sản phẩm, tỷ lệ sản phẩm tốt lần lượt là 95%; 96%; 97%

a Lập bảng phn phối xc suất của số sản phẩm tốt trong 3 sản phẩm

b Tính số sản phẩm trung bình, phương sai của số sản phẩm tốt

Cu 2: Xác suất để một người thợ sắp chữ sắp lầm một mẫu tự là 0,001 Tính xác suất để trong

4000 mẫu tự thì người thợ này sắp lầm:

a Đúng 3 mẫu tự

b Tối đa 3 mẫu tự

Cu 3: Sản phẩm được đóng thành hộp Mỗi hộp có 10 sản phẩm trong đó có 7 sản phẩm tốt Người mua hàng quy định cách kiểm tra như sau: từ hộp lấy ngẫu nhiên 3 sản phẩm, nếu thấy cả 3 sản phẩm đều tốt thì mua hộp đó, nếu ngược lại thì loại hộp

Kiểm tra 100 hộp trong siêu thị Tính xác suất để:

a Có 25 hộp được mua

b Không quá 30 hộp được mua

c Phải kiểm tra ít nhất bao nhiêu hộp để xác suất có ít nhất một hộp được mua không dưới 95%

Trang 3

Cu 4: Khảo sát thu nhập (USD/tháng) của một số công chức trong công ty Vina LG ta được kết quả sau:

a Với mẫu trên nếu muốn độ tin cậy để ước lượng thu nhập trung bình trong một thng của một cơng chức l 99,73% thì độ chính xác là bao nhiêu USD?

b Ước lượng thu nhập trung bình trong một tháng của một người trong công ty với độ tin cậy 98%

c Một người có thu nhập hàng tháng trên 850 USD được gọi là khá tốt Hy ước lượng tỷ

lệ những người có thu nhập khá tốt với độ tin cậy 99%

Có tài liệu nói rằng nếu thu nhập hàng tháng của những người cĩ thu nhập kh tố l 890USD thì cơng ty lm ăn có hiệu quả Theo bạn công ty này có hiệu quả không với mức ý nghĩa 5%

5/ ĐỀ THI

Câu 1: Trọng lượng của một loại trái cây (tính bằng kg) là biến ngẫu ngiên có hàm mật độ

xác suất:

2

( )

kx x khi x

f x

khi x



a Tìm k, những trái cây có trọng lượng trung bình từ 0,4kg đến 1kg là loại A Tính tỷ lệ sản phẩm loại A?

b Từ một lô có rất nhiều trái cây này lấy ngẫu nhiên lần lượt từng trái ra 150 trái Tìm số trái cây loại A có nhiều khả năng nhất có trong 150 trái?

Câu 2: Gọi X là trọng lượng của một bao cà phê được đóng gói tự động có phân phối

chuẩn trung bình 10(kg) và phương sai 0,09

a Tính tỷ lệ bao cà phê có trọng lượng sai lệch so với trung bình của nó không quá 150gram

b Tính xác suất trong 100 bao cà phê được chọn ngẫu nhiên có từ 20 đến 35 bao trọng lượng sai lệch so với trung bình của nó không quá 150gram

Câu 3: Một hộp có 15 bóng đèn trong đó có 9 bóng còn mới Lần đầu người ta lấy 3 bóng

để sử dụng Sau đó trả lại 3 bóng đó vào hộp Lần 2 lấy lại 3 bóng Khả năng cả 3 bóng đèn lấy ra lần thứ 2 đều là bóng mới là bao nhiêu?

Câu 4: Khảo sát về chỉ tiêu độ dài X(cm) của một loại cây trồng kết quả cho trong bảng:

a Ước lượng trung bình của chỉ tiêu X của các loại cây trồng với độ tin cậy 96%?

b Với mẫu đã cho, khi muốn ước lượng trung bình chỉ tiêu X của loại cây trồng trên với

độ tin cậy 99% và độ chính xác là 8cm thì cần điều tra thêm bao nhiêu cây nữa?

c Những cây có chỉ tiêu X trên 850cm là những cây loại A Hãy ước lượng tỷ lệ những loại cây A với độ tin cậy 99%?

Có ý kiến cho rằng do thiếu chăm sóc kỹ thuật nên trung bình chỉ tiêu X các loại cây nhỏ hơn 970cm Cho nhận xét về ý kiến đó với mức ý nghĩa 5% Biết rằng X có phân phối chuẩn 6/ ĐỀ THI

Trang 4

Câu 1 Trọng lượng của một loại sản phẩm do 1 máy sản xuất ra là biến ngẫu nhiên có

phân phối chuẩn, trung bình 160g, phương sai (6g)2

a/ Sản phẩm đạt tiêu chuẩn khi có trọng lượng từ 147g đến 166g Tính tỷ lệ sản

phẩm đạt tiêu chuẩn

b/ Cho máy sản xuất 100 sản phẩm

+ Tìm xác suất có 80 sản phẩm đạt tiêu chuẩn

+ Tìm xác suất có từ 70 đến 90 sản phẩm đạt tiêu chuẩn

Câu 2 Một quầy hàng thực phẩm có 2 thùng sữa hộp, mỗi thùng có 10 hộp, trong đó

thùng thứ i có i+1 hộp quá hạn sử dụng ( i = 1, 2)

a/ Lấy ngẫu nhiên 2 hộp từ thùng thứ nhất bỏ vào thùng thứ 2 rồi sau đó từ thùng

thứ 2 lấy ngẫu nhiên ra 2 hộp Tính xác suất được 2 hộp quá hạn sử dụng

b/ Chọn ngẫu nhiên một thùng rồi từ đó lấy ngẫu nhiên ra 2 hộp không hoàn lại thì

được 2 hộp đã quá hạn sử dụng

+ Tính xác suất 2 hộp đó là của thùng thứ 2

+ Nếu từ thùng đó lấy tiếp ra 1 hộp thì xác suất được hộp tốt bằng bao nhiêu ?

Câu 3 Một quầy hàng điện máy có một thùng bóng đèn trong đó có 7 bóng loại I và 5

bóng loại II Khách hàng thứ nhất chọn ngẫu nhiên mua 2 bóng, khách hàng thứ hai chọn ngẫu nhiên mua 3 bóng

a/ Tìm QLPPXS và lập hàm PPXS của số bóng loại I khách hàng thứ nhất mua được

b/ Tính xác suất để khách hàng thứ hai mua được ít nhất 1 bóng loại I

Câu 4 Theo dõi số sữa Vinamilk bán được (kg) trong 1 số tuần tại 1 siêu thị, người ta có kết quả sau :

a/

Bằng khoảng tin cậy đối xứng hãy ước lượng số sữa trung bình bán được trong 1

tuần với độ tin cậy 97%

b/ Bằng cách thay đổi phương thức kinh doanh, người ta thấy số sữa trung bình bán

được trong một tuần là 200kg Việc thay đổi này có hiệu quả gì về bản chất không?

với mức ý nghĩa  = 5%

c/ Những tuần bán được 250kg trở lên là những tuần có hiệu quả Nếu muốn ước

lượng tỷ lệ những tuần có hiệu quả với độ chính xác 3% và độ tin cậy 98% thì phải

điều tra thêm bao nhiêu tuần nữa?

7/ ĐỀ THI

Câu1 Một thang máy được lắp 2 van bảo hiểm với xác suất hỏng của các van tương

ứng là 0,1; 0,2 Thang máy sẽ hoạt đđộng an toàn khi không có van hỏng

Tìm xác suất :

a/ Thang máy hoạt động an toàn

b/ Thang máy có van hỏng

Câu 2: Một công ty vàng bạc đá quý có 3 lô hàng, mỗi lô có 10 viên đá quí 2 mầu

trắng, đen (cùng kích thước) Lô thứ i có i+1 viên trắng i1,3

2.1/ Lấy ngẫu nhiên ở mỗi lô ra 1 viên

+ Tìm QLPP xác suất của số viên đen có trong 3 viên lấy ra

+ Lập hàm PPXS và tìm mốt và trung vị của số viên đen lấy ra được

2.2/ a) Chọn ngẫu nhiên một lô rồi từ đó lấy ngẫu nhiên không hoàn lại 3 viên

Tính xác suất được 3 viên trắng

b) Chọn ngẫu nhiên một lô rồi từ đó lấy ngẫu nhiên không hoàn lại 2 viên

i

x 0 - 50 50 - 100 100 - 150 150 - 200 200 - 250 250 - 300 300 - 350

i

Trang 5

thì được 2 viên đen

+ Tính xác suất 2 viên đó là của lô thứ 2

+ Nếu cũng từ lô đã chọn đó lấy tiếp ra 1 viên thì xác suất được viên đen bằng bao nhiêu ?

Câu 3: Trọng lượng của một loại sản phẩm là X có phân phối chuẩn X ~ N(10; 0,25)

a/ Tính tỷ lệ sản phẩm có trọng lượng từ 9,5kg đến 11kg

b/ Tính tỷ lệ sản phẩm có trọng lượng 9kg

Câu 4 Khảo sát về thu nhập của nhân viên ở một đơn vị Người ta tiến hành điều tra một số nhân viên của đơn vị đó và có số liệu sau :

1.1 Tìm khoảng tin cậy đối xứng về thu nhập trung bình của 1 nhân viên ở đơn vị đó

với độ tin cậy 95%

1.2 Những người có thu nhập trên 1,5 triệu đ/tháng là những người có đóng thuế thu nhập Tìm khoảng tin cậy đối xứng của số người có đóng thuế thu nhập của đơn vị đó với độ tin cậy 99% Biết tổng số người làm việc ở đơn vị đó là 1800 người

1.3 Nếu giám đốc báo cáo mức thu nhập bình quân của 1 công nhân có đóng thuế thu nhập là

2 triệu đ/tháng thì có tin cậy được không ? Với mức ý nghĩa 5%

8/ ĐỀ THI

Câu1 Một thiết bị gồm 3 bộ phận hoạt động độc lập với nhau Xác suất trong thời

gian t các bộ phận bị hỏng tương ứng là 0,4; 0,2; 0,3

a/ Tìm QLPP xác suất của số bộ phận bị hỏng

b/ Lập hàm PPXS của số bộ phận bị hỏng và tìm mốt và trung vị

Câu 2: Có 3 kiện hàng , mỗi kiện có 10 sản phẩm Kiện thứ nhất có 9 sản phẩm loại I;

kiện thứ hai có 8 sản phẩm loại I và kiện thứ ba có 6 sản phẩm loại I

2.1/ Từ mỗi kiện lấy ngẫu nhiên không hoàn lại ra 2 sản phẩm để kiểm tra, nếu

cả 2 sản phẩm lấy ra để kiểm tra đều là loại I thì mua kiện hàng đó Tìm xác

suất để có ít nhất một kiện hàng được mua ?

2.2/ Chọn ngẫu nhiên một kiện rồi từ kiện đó lấy ngẫu nhiên không hoàn lại ra 2

sản phẩm thì được 2 sản phẩm loại I

a/ Tính xác suất 2 sản phẩm đó là của kiện thứ hai

b/ Nếu cũng từ kiên đó lấy tiếp 1 sản phẩm thì xác suất để lấy được sản phẩm

loại I là bao nhiêu ?

Câu 3: Trọng lượng của một loại sản phẩm là X có phân phối chuẩn X ~ N(80; 64)

a/ Tính tỷ lệ sản phẩm có trọng lượng từ 70kg đến 100kg

b/ Tính tỷ lệ sản phẩm có trọng lượng 80kg

Câu 4 Khảo sát nhu cầu tiêu thụ loại sản phẩm A ở một thành phố Người ta tiến

hành khảo sát 500 hộ gia đình thì thấy có 400 hộ có dùng loại sản phẩm A với số

liệu thống kê sau :

2.1

Bằng khoảng tin cậy đối xứng hãy ước lượng số lượng trung bình sản phẩm A

tiêu thụ được ở thành phố ấy trong một tháng với độ tin cậy 95% ? (biết tổng số

Thu nhập

Số lượng tiêu

Trang 6

hộ gia đình ở thành phố này là 600.000 hộ).

2.2 Nếu muốn ước lượng tỷ lệ hộ gia đình có nhu cầu về loại sản phẩm A với độ

tin cậy là 98% và độ chính xác 4% thì cần khảo sát bao nhiêu hộ gia đình ?

2.2 Một tài liệu cho biết : mức tiêu thụ trung bình loại sản phẩm A ở thành phố này

là 750 tấn/tháng thì có chấp nhận được không ? với mức ý nghĩa 5%

9/ ĐỀ THI

Câu 1 Một quầy hàng thực phẩm có 2 thùng sữa hộp, mỗi thùng có 10 hộp, trong đó

thùng thứ i có i+1 hộp quá hạn sử dụng ( i = 1, 2 )

1.1/ Lấy ngẫu nhiên 2 hộp từ thùng thứ nhất bỏ vào thùng thứ 2 rồi từ thùng thứ 2

lấy ngẫu nhiên ra 2 hộp

a/ Tìm QLPPXS của số hộp quá hạn sử dụng lấy ra được

b/ Tính xác suất có ít nhất 1 hộp quá hạn sử dụng

1.2/ Chọn ngẫu nhiên một thùng rồi từ đó lấy ngẫu nhiên ra 2 hộp không hoàn lại

thì được 2 hộp quá hạn sử dụng

a/ Tính xác suất 2 hộp đó là của thùng thứ 2

b/ Nếu từ thùng này lấy tiếp ra 1 sản phẩm nữa thì xác suất được 1 hộp tốt bằng bao nhiêu ?

Câu 2 Một quầy hàng đđiện máy có một thùng bóng đèn trong đó có 600 bóng loại I

và400 bóng loại II

2.1/ Một khách hàng chọn ngẫu nhiên mua 3 bóng Tính xác suất:

a/ Được 3 bóng loại I

b/ Có 1 bóng loại II

2.2/ Một đại lý chọn mua 100 bóng Tính xác suất :

a/ Có từ 30 đến 55 bóng loại II

b/ Có ít hơn 55 bóng loại II

Câu 3 Khảo sát về thu nhập của công nhân ở một đơn vị H Người ta tiến hành điều tra

một số công nhân của đơn vị đó và có số liệu sau :

1.1 Bằng khoảng tin cậy đối xứng hãy ước lượng thu nhập trung bình của 1 công nhân

ở đơn vị H, với độ tin cậy 95%

1.2 Những người có thu nhập trên 1,5 triệu đ/tháng là những người có đóng thuế thu nhập Bằng khoảng tin cậy đối xứng hãy ước lượng số người có đóng thuế thu nhập của đơn vị

đó với độ tin cậy 97% Biết tổng số người làm việc ở đơn vị ấy là 1800 người

1.3 Nếu giám đốc báo cáo mức thu nhập bình quân của 1 công nhân có đóng thuế thu nhập là 1,6 triệu đ/tháng thì có tin cậy được không ? Với mức ý nghĩa 3%

1.4 Nếu muốn ước lượng tỷ lệ những người đóng thuế thu nhập với độ chính xác 4% và độ tin cậy 98% thì phải điều tra thêm bao nhiêu người nữa ?

10/ ĐỀ THI

Câu 1 : Một kiện hàng có 25 sản phẩm, trong đó có 5 phế phẩm Lấy ngẫu nhiên 4 sản

phẩm Tính xác suất :

a/ Được cả 4 sản phẩm tốt

b/ Được ít nhất 1 phế phẩm Câu 2: a/ Một thùng hàng có 2 kiện hàng Kiện I có 3 sản phẩm tốt và 2 xấu Kiện II

có 2 sản phẩm tốt và 3 xấu Lấy ngẫu nhiên từ kiện I ra 2 sản phẩm và từ

kiện II ra1 sản phẩm Tìm quy luật phân phối xác suất của số sản phẩm tốt

lấy ra được

b/ Lấy ngẫu nhiên từ kiện I ra 2 sản phẩm bỏ vào kiện II rồi từ kiện II lấy ngẫu

Thu nhập

Trang 7

nhiên ra1 sản phẩm được sản phẩm tốt Tính xác suất sản phẩm tốt ấy là của kiện II

Câu 3: Đường kính của một lọai trục máy do một máy tiện sản xuất ra là Biến ngẫu nhiên có phân phối chuẩn với trung bình 250 mm và phương sai 25mm Trục2

máy được gọi là hợp qui cách nếu đường kính từ 245 mm đến 255 mm

Cho máy sản xuất 100 trục Tính xác suất để có :

a/ 50 trục hợp qui cách

b/ Không quá 80 trục hợp qui cách

Câu 4: Theo dõi số tiền gửi tiết kiệm (tr.đ) trong 1 số ngày tại 1 điểm giao dịch của một chi nhánh NH, người ta có kết quả sau :

i

i

a/ Hãy ước lượng số tiền gửi trung bình của điểm giao dịch, với độ tin cậy 95% b/ Bằng cách thay đổi phương thức khuyến khích gửi tiết kiệm, người ta thấy số tiền gửi trung bình trong một ngày là 200 tr.đ Việc thay đổi này có hiệu quả gì

về bản chất không? Với mức ý nghĩa  = 5%

c/ Những ngày có số tiền gửi 250 tr.đ trở lên là những ngày có hiệu quả Hãy cho biết số ngày có hiệu quả của điểm giao dịch với độ tin cậy 98%

d/ Nếu muốn ước lượng tỷ lệ những ngày có hiệu quả với độ chính xác 3% và độ tin cậy 98% thì phải điều tra thêm bao nhiêu ngày nữa?

11/ ĐỀ THI

Câu1 Một thang máy được lắp 2 van bảo hiểm với xác suất hỏng của các van tương ứng là 0,1; 0,2 Thang máy sẽ hoạt đđộng an tòan khi không có van hỏng Tìm xác suất : a/ Thang máy hoạt động an tòan

Câu 2: Một công ty vàng bạc đá quý có 3 lô hàng, mỗi lô có 10 viên đá quí 2 mầu

trắng, đen (cùng lọai).Lô thứ i có i+1 viên trắng i1,3

2.1/ Lấy ngẫu nhiên ở mỗi lô ra 1 viên Tính xác suất được cả 3 viên mầu trắng 2.2/ Lấy ngẫu nhiên một lô rồi từ đó lấy ra 2 viên, tính xác suất :

a/ Được cả 2 viên mầu đen

b/ Biết 2 viên lấy ra mầu đen, tính xác suất để 2 viên ấy là của lô thứ 3

Câu 3: Một lô hàng gồm 40 sản phẩm, trong đó có 10 sản phẩm loại A, lấy ngẫu

nhiên 8 sản phẩm Tính trung bình, phương sai và độ lệch chuẩn của số sản

phẩm loại A trong 8 sản phẩm lấy ra

Câu 4 X(tính bằng %),Y(tính bằng cm) là 2 chỉ tiêu của 1 loại vật tư xây dựng.Điều

tra một mẫu ta có kết quả :

Y

a/ Gĩa sử giữa X & Y có phụ thuộc tương quan tuyến tính Tìm phương trình tương quan tuyến tính của X theo Y

Trang 8

b/ Tính hệ số tương quan tuyến tính RXY và nêu ý nghĩa RXY.

c/ Những sản phẩm có chỉ tiêu Y không vượt qúa 88cm là loại B Ước lượng

tỷ lệ sản phẩm loại B với đđộ tin cậy 99%

12/ ĐỀ THI

Câu 1 : Một kiện hàng có100 sản phẩm, trong đó có 5 phế phẩm Lấy ngẫu nhiên lần lượt 3 sản phẩm không hoàn lại Tính xác suất :

a/ Được cả 3 sản phẩm tốt

b/ Được ít nhất 1 sản phẩm tốt

Câu 2: Có 3 thí sinh cùng dự thi tuyển vào một Ngân hàng T Xác suất trúng tuyển của các thí sinh thứ tự là 0,6; 0,5; 0,4 Tìm quy luật phân phối xác suất của số thí sinh trúng tuyển Trung bình có bao nhiêu thí sinh trúng tuyển và số thí sinh trúng tuyển tin chắc ?

Câu 3: Đường kính của một lọai trục máy do một máy tiện sản xuất ra là Biến ngẫu

là hợp qui cách nếu đường kính từ 245 mm đến 255 mm Cho máy sản xuất 100 trục Tính xác suất để có :

a/ 50 trục hợp qui cách

b/ Không quá 80 trục hợp qui cách

Câu 4: Theo dõi số tiền gửi tiết kiệm (tr.đ) trong 1 số tuần tại 1 chi nhánh NH, ta có kết quả sau :

i

i

a/ Bằng khoảng tin cậy đối xứng, hãy ước lượng số tiền gửi trung bình trong 1 tuần, với độ tin cậy 97%

b/ Bằng cách thay đổi phương thức khuyến khích gửi tiết kiệm, người ta thấy số

tiền gửi trung bình trong một tuần là 200 tr.đ Việc thay đổi này có hiệu quả gì

về bản chất không? Với mức ý nghĩa  = 5%

c/ Những tuần có số tiền gửi 250 tr.đ trở lên là những tuần có hiệu quả Hãy ước

lượng tỷ lệ của những tuần có hiệu quả với độ tin cậy 90%

d/ Nếu muốn ước lượng tỷ lệ những tuần có hiệu quả với độ chính xác 3% và độ tin

cậy 98% thì phải điều tra thêm bao nhiêu khách hàng?

13/ ĐỀ THI

Câu 1

Một quầy hàng đđiện máy có một thùng bóng đèn trong đó có 80 bóng loại I và 20 bóng loại II Một khách hàng chọn ngẫu nhiên mua 5 bóng Tính xác suất:

a/ Được 5 bóng loại I

b/ Có ít nhất 1 bóng loại II

Câu 2

Một kiện hàng gồm 80 sản phẩm tốt và 20 sản phẩm xấu được vận chuyển về kho, trong quá trình vận chuyển đã có 1 sản phẩm (không rõ chất lượng) bị mất Khi kiện hàng về đến kho, lấy ngẫu nhiên ra 1 sản phẩm để kiểm tra

a/ Tính xác suất lấy được sản phẩm tốt

b/ Biết sản phẩm lấy ra là sản phẩm tốt, tính xác suất để sản phẩm bị mất làsản phẩm xấu

Câu 3

Trọng lượng của một loại sản phẩm do 1 máy sản xuất ra là biến ngẫu nhiên có phân phối chuẩn, trung bình 180g, phương sai 49g2 Sản phẩm đạt tiêu chuẩn khi có trọng lượng từ 167g đến 188g Cho máy sản xuất 100 sản phẩm Tìm xác suất để có từ 70 đến 90 sản phẩm đạt tiêu chuẩn

Trang 9

Câu 4

Khảo sát về thu nhập của công nhân ở một đơn vị Người ta tiến hành điều tra một số công nhân của đơn vị đó và có số liệu sau :

Thu nhập/năm

a/ Bằng khoảng tin cậy đối xứng hãy ước lượng thu nhập trung bình của 1 công nhân ở đơn vị

đó với độ tin cậy 95%

b/ Người có thu nhập từ 5 triệu đ/tháng trở lên phải đóng thuế thu nhập Hãy cho biết số người đóng thuế thu nhập ở đơn vị, với độ tin cậy 99%

c/ Nếu Giám đốc đơn vị báo cáo mức thu nhập bình quân của 1 công nhân có đóng thuế thu nhập là 9 triệu đ/tháng thì có tin cậy được không? Với mức ý nghĩa 5%

d/ Nếu muốn ước lượng tỷ lệ người có đóng thuế thu nhập với độ chính xác 3% và độ tin cậy 99% thì phải điều tra thêm bao nhiêu người nữa ?

14/ ĐỀ THI

Câu 1

Có 3 SV nhưng chỉ có 2 vé đi xem ca nhạc Họ làm 3 lá thăm trong đó có 2 lá được đánh dấu Mỗi người lần lượt bốc 1 lá thăm, nếu người nào bốc được lá có đánh dấu thì

đi xem ca nhạc Hãy chứng minh sự công bằng của cách làm ấy

Câu 2:

Một Công ty vàng bạc đá quý có 1 lô hàng gồm 100 hộp đá quý, mỗi hộp đựng 10 viên Gọi X là số viên màu xanh có trong 1 hộp Cho biết bảng phân phối xác suất của X như sau:

Người ta lấy ngẫu nhiên không hoàn lại từ 1 hộp ra 3 viên

a/ Tìm quy luật phân phối xác suất của số viên màu xanh lấy ra được

b/ Nếu 3 viên lấy ra đều màu xanh thì hộp đó được chọn Tính xác suất có không quá 33 hộp được chọn từ lô hàng trên

Câu 3

Một thùng bóng đèn có 7 bóng loại I và 5 bóng loại II Hai khách hàng không quen biết nhau đến mua bóng đèn Khách hàng thứ nhất chọn ngẫu nhiên mua 2 bóng, khách hàng thứ hai chọn ngẫu nhiên mua 3 bóng Tính xác suất để khách hàng thứ hai mua được ít nhất 1 bóng loại I

Câu 4

Một ngân hàng T dự định mở chi nhánh ở một vùng dân cư L Để đánh giá tiềm năng vốn của nhân dân vùng dân cư đó, Giám đốc NH cho điều tra thu nhập bình quân/tháng của một số hộ gia đình (chọn ngẫu nhiên) và thu được số liệu sau :

a/

Bằng khoảng tin cậy đối xứng, hãy ước lượng thu nhập trung bình của một hộ gia

đình ở vùng dân cư ấy với độ tin cậy 95%

b/ Theo bộ phận tín dụng báo cáo thì chi nhánh chỉ hoạt động có hiệu quả tại vùng đó

đ nếu thu nhập bình quân/tháng của các hộ tối thiểu là 8 triệu đồng Vậy qua kết quả điều tra trên Giám đốc ngân hàng T có nên quyết định mở chi nhánh ở vùng dân cư

L không? với mức ý nghĩa 5%, biết rằng thu nhập bình quân/tháng của các hộ gia đình ở vùng đó tuân theo qui luật chuẩn

Thu nhập bìnhquân/tháng

Trang 10

c/ Một số liệu cho biết hộ thu nhập bình quân từ 9,5 triệu đ/tháng là hộ có nhu cầu vay vốn Hãy cho biết số hộ có nhu cầu vay vốn hiện nay ở vùng đó, với độ tin cậy 95% 15/ ĐỀ THI

Câu 1

Hai công ty A và B cùng kinh doanh một mặt hàng Xác suất công ty A bị thua lỗ là 0,2; Xác suất công ty B bị thua lỗ là 0,4; Xác suất 2 công ty này cùng bị thua lỗ là 0,1

Tính xác suất chỉ có một công ty bị thua lỗ

Câu 2:

Một Ngân hàng T dự định kinh doanh một loại tiền gửi Theo đánh giá của giới kinh doanh tiền tệ thì với xác suất 0,1587 sẽ cho lãi suất cao hơn 20% và với xác suất 0,0228

sẽ cho lãi suất cao hơn 25% Biết rằng lãi suất (%) kinh doanh loại tiền gửi đó là BNN

có quy luật phân phối chuẩn Hãy cho biết khả năng kinh doanh màkhông bị lỗ của

Ngân hàng T là bao nhiêu ?

Câu 3

Một cán bộ tín dụng mỗi ngày đi xác minh cho vay 10 khách hàng, xác suất cho vay được ở mỗi khách hàng là 0,3

a/ Tính xác suất có 3 khách hàng được vay

b/ Tính xác suất có ít nhất một khách hàng được vay

Câu 4

Một công ty tiến hành khảo sát nhu cầu tiêu dùng về một loại sản phẩm do công ty sản xuất Tiến hành khảo sát 500 hộ gia đình ở một Quận T thì thấy có 400 hộ có dùng loại sản phẩm do công ty sản xuất với số liệu thống kê như sau :

a/ Bằng khoảng tin cậy đối xứng, hãy ước lượng số lượng sản phẩm công ty tiêu thụ được ở Quận trong một tháng với độ tin cậy 95%?(biết tổng số hộ gia đình ở Quận là 600.000 hộ) b/ Nếu muốn ước lượng tỷ lệ hộ gia đình có nhu cầu về loại sản phẩm này với độ chính xác 4% và độ tin cậy 98% thì cần khảo sát bao nhiêu hộ gia đình ?

c/ Một tài liệu nói rằng: mức tiêu thụ trung bình loại sản phẩm này của công ty ở Quận T là

750 tấn/tháng thì có chấp nhận được không ? với mức ý nghĩa 5%

16/ ĐỀ THI

Câu 1

Mỗi sinh viên thi vấn đáp môn XSTK được quyền trả lời 4 lần (mỗi lần bốc 1 lá thăm, mỗi lá thăm là1 câu hỏi) Một SV đi thi, bốc thăm và trả lời lần lượt từng câu cho đến khi đạt yêu cầu hoặc hết cả 4 lần thì thôi Tìm quy luật phân phối xác suất của số câu SV ấy

đã trả lời ? Biết xác suất trả lời đạt yêu cầu của mỗi câu là 0,7

Câu 2:

Một quầy hàng đđiện máy có một thùng bóng đèn trong đó có 600 bóng loại I và400 bóng loại II

2.1/ Một khách hàng chọn kiểm tra ngẫu nhiên 3 bóng (không hoàn lại), nếu cả 3 bóng loại I thì mua thùng bóng đèn đó Tính xác suất thùng bóng đèn được mua

2.2/ Một đại lý chọn mua 100 bóng Tính xác suất :

a/ Có từ 30 đến 55 bóng loại II

b/ Có ít hơn 55 bóng loại II

Câu 3

Một phòng giao dịch của một Công ty chứng khoán khớp lệnh được trung bình 150 lệnh

Số lượng tiêu dùng

Ngày đăng: 28/05/2014, 10:58

TỪ KHÓA LIÊN QUAN

w