Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 102 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
102
Dung lượng
560,13 KB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: XẤP XỈ BIẾN ĐỔI LAPLACE NGƯỢC LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Năm 2007, Huang Zhang giới thiệu không gian metric nón thu nhiều kết thú vị Một vấn đề đặt tự nhiên rằng, số kết khơng gian metric cịn cho khơng gian metric nón hay khơng, thực câu hỏi thú vị thu hút nhiều nhà tốn học giới quan tâm Nhờ đó, số tác giả thu nhiều kết liên quan Sau đó, Khani Pourmahdian chứng minh khơng gian metric nón metric hóa Qua cho thấy mở rộng khơng gian metric thành khơng gian metric nón tầm thường 322 2 Xấp xỉ tích chập Lp Ta thấy rằng, cho f ∈ Lp (Ω) với ≤ p < ∞, tồn (fh )h ⊂ C0c (Ω) cho fh → f Lp (Ω) Ta chứng minh tính xấp xỉ này, tìm kiếm xấp xỉ theo hàm quy Chính xác Câu hỏi: (i) Có tồn (fh )h ⊂ C1c cho fh → f Lp (Ω)? (ii) Có thể xây dựng cách rõ ràng xấp xỉ thứ h hàm fh cho f ∈ Lp (Ω)? Câu trả lời cho câu hỏi thứ hai có ý nghĩa xấp xỉ số Định nghĩa (Friedrichs’ mollifiers) Một dãy mollifiers dãy hàm ϱh : Rn → R, (h = 1, 2, ) cho, với h, ϱ ∈ C∞ (Rn ); (M o1) spt(ϱh ) ⊂ B(0, 1/h); Z ϱh dx = 1; (M o2) (M o3) Rn ϱh (x) ≥ 0, ∀x ∈ Rn (M o4) Ví dụ mollifiers: Khá đơn giản để xây dựng dãy mollifiers, hàm không biến ϱ : Rn → R thỏa mãn n ϱ ∈ C∞ c (R ), spt(ϱ) ⊂ B(0, 1), ϱ ≥ Ví dụ, cho ϱ(x) := exp |x| − |x| < |x| ≥ n Khi dễ thấy ϱ ∈ C∞ c (R ) Hơn nữa, ta có dãy mollifiers định nghĩa ϱh (x) := c hn ϱ(hx), x ∈ Rn , h ∈ N −1 Z c := ϱdx Rn Chú ý: Nếu A, B ⊂ Rn , A ± B ký hiệu tập A ± B := {a ± b : a ∈ A, b ∈ B} Bài tập Chứng minh (i) Nếu A compact B đóng, A + B đóng; (ii) A B compact A + B Mệnh đề (Định nghĩa tính chất mollifiers đầu tiên) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Định nghĩa, cho h ∈ N x ∈ Rn , Z ϱh (x − y)f (y)dy, ∀x ∈ Rn fh (x) := (ϱ ∗ f )(x) := Rn Khi (i) Hàm fh : Rn → R is well defined; (ii) fh (x) = (ϱh ∗ f )(x) = (f ∗ ϱh )(x) với x ∈ Rn h ∈ N; (iii) fh (x) ∈ C0 (Rn ) với h Hàm fh gọi mollifiers thứ h f Chứng minh Để đơn giản, ta ký hiệu ϱh ≡ ϱ (i) Theo (Mo2) (Mo4), spt(ϱ) ⊂ B(0, 1/h) Khi Z Z |f (y)ϱ(x − y)|dy = Rn |f (y)ϱ(x − y)|dy B(x,1/h) Z ≤ sup ϱ Rn |f (y)|dy < ∞ B(x,1/h) Do đó, ta thay đổi x ∈ Rn , hàm gx (y) := ϱ(x − y)f (y), y ∈ Rn khả tích Rn , xác định tích phân Z Z R∋ gx (y)dy = ϱ(x − y)f (y)dy = (ϱ ∗ f )f (x), ∀x ∈ Rn Rn Rn (ii) cách thay đổi biến Z (f ∗ ϱ)(x) = f (x − y)ϱ(y)dy (z=x=y) Z f (z)ϱ(x − z)dz = (ϱ ∗ f )(x) = Rn Rn (iii) Cho x ∈ Rn xr → x, ta chứng minh (ϱ ∗ f )(xr ) → (ϱ ∗ f )(x) (1) Chú ý Z (ϱ ∗ f )(xr ) − (ϱ ∗ f )(x) = (ϱ(xr − y) − ϱ(x − y))f (y)dy, ∀r ∈ N (2) Rn Từ dãy (xr )r bị chặn Rn , tồn tập compact K ⊂ Rn thỏa mãn B(xr , 1/h) = xr − B(0, 1/h) ⊂ K, B(x, 1/h) ∈ K, ∀r ∈ N Đặc biệt ϱ(xr − y) − ϱ(x − y) = 0, ∀y ∈ / K, ∀r ∈ N (3) Bởi vì, ϱ ∈ Lip(Rn ), theo (??), tồn L > thỏa |ϱ(xr − y) − ϱ(x − y)| ≤ LχK (y)|xr − x|, ∀y ∈ Rn , ∀r ∈ N Vì ta |ϱ(xr − y)ϱ(x − y)||f (y)| ≤ LχK (y)|f (y)||xr − x|, ∀y ∈ Rn , ∀r ∈ N (4) Từ (??), (??) định lý tính hội tụ bị trội, theo (??) Nhận xét Ký hiệu ∗ tích chập hai hàm không gian Rn Lưu ý, kết mệnh đề ?? giữ f ∈ L1loc (Rn ) ϱ ≡ ϱh ∈ C0 (Rn ) thỏa (Mo2) Trên thực tế, xác định tích chập hai hàm g ∈ Lp (Rn ) với ≤ p ≤ ∞ f ∈ L1 (Rn ) Z (g ∗ f )(x) := g(x − y)f (y)dy Rn giữ (g ∗ f ) ∈ Lp (Rn ) ∥g ∗ f ∥Lp (Rn ) ≤ ∥g∥Lp (Rn ) ∥f ∥L1 (Rn ) Định lý (Friedrichs - Sobolev, Xấp xỉ theo tích chập Lp ) Cho f ∈ L1loc (Rn ) (ϱh )h dãy mollifiers Khi (i) f ∗ ϱh ∈ C ∞ (Rn ) với h ∈ N (ii) ∥f ∗ϱ∥Lp (Rn ) ≤ ∥f ∥Lp (Rn ) với h ∈ N, f ∈ Lp (Rn ) với p ∈ [1, ∞] (iii) spt(f ∗ ϱ) ⊂ spte (f ) + B(0, 1/h) với h ∈ N (iv) Nếu f ∈ Lp (Rn ) với ≤ p ≤ ∞, f ∗ ϱh ∈ C ∞ (Rn ) ∩ Lp (Rn ) với h ∈ N, f ∗ ϱh → f h → ∞, Lp (Rn ), biết ≤ p < ∞ Kết cho ta hai kết quan trọng Định lý (Bổ đề tính tốn biến) Cho Ω ⊂ Rn tập mở cho f ∈ L1loc (Ω) Giả sử Z f φdx = 0, ∀φ ∈ Cc∞ (Ω) (∗) Ω Khi f = hầu khắp nơi Ω Chứng minh Chứng minh điều kiện đủ Z |f |dx = với tập compact K ∈ Ω K Thật vậy, theo (??), suy f = hầu khắp nơi K, với tập compact K ∈ Ω Ta có kết luận Ta chứng minh (??) Cho tập compact K ∈ Ω, định nghĩa g : Rn → R f (x) x ∈ K, f (x) ̸= g(x) := |f (x)| ngược lại Khi g ∈ L1 (Rn ) spte (g) ⊆ K ⊂ Ω Cho gh := g ∗ ϱh Theo định lý ?? (iii), tồn h = h(K) ∈ N cho spt(g ∗ ϱh ) ⊆ spte (g) + B(0, 1/h) ⊆ K + B(0, 1/h) ⊂ Ω (5) với h > h Do đó, theo định lý 78 (i), (ii), gh ∈ C∞ h > h |gh (x)| ≤ ∥g∥L∞ (Rn ) = 1, ∀x ∈ Rn , ∀h ∈ N (6) c Từ (∗) ta Z f gh dx = 0, ∀h ≤ h Ω Mặt khác, từ định lý ?? (iv) (107), ta giả sử, dãy tăng, gh → g hầu khắp nơi Rn Do đó, Z Z Z f gh dx → = 0= Ω |f |dx f g dx = Ω K Định lý (Xấp xỉ theo hàm C∞ Lp ) Cho Ω ⊂ Rn tập mở p Khi C∞ c (Ω) trù mật L (Ω), ∥.∥Lp , biết ≤ p < ∞ Chứng minh Cho f ∈ Lp (Ω), định nghĩa fe : Rn → R ( f (x) x ∈ Ω fe(x) := x ∈ Rn \ Ω Chú ý fe ∈ Lp (Rn ) Cho (Ωh )h dãy tăng tập mở bị chặn cho Ω = ∪∞ h=1 Ωh , Ωh ⊂ Ωh ⊂ Ωh+1 , ∀h, định nghĩa gh (x) := χΩh (x)fe(x) fh,r (x) := (ϱr ∗ gh )(x) x ∈ Rn , h, r ∈ N Theo định lý ?? (iii) suy spt(fh,r ) ⊂ B(0, 1/r) + Ωh ⊂ Ω (7) Hơn nữa, cho h ∈ N, tồn rh = r(h) ∈ N cho rh ≥ h B(0, 1/rh ) + Ωh ⊂ Ω Định nghĩa fh (x) := (ϱrh ∗ gh )(x), x ∈ Rn , h ∈ N, (8) để đơn giản, giả sử rh = h Khi đó, theo định lý ?? (i), (ii) (??), (??), fh ∈ C∞ c (Ω) ∥fh − f ∥Lp (Ω) = ∥fh − fe∥Lp (Rn ) ≤ ∥ϱh ∗ gh − ϱh ∗ fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp Rn = ∥ϱh ∗ (gh − fe)∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) (9) ≤ ∥gh − fe∥Lp (Rn ) + ∥ϱh ∗ fe − fe∥Lp (Rn ) , ∀h Từ định lý ?? (iv), ϱh ∗ fe → fe Lp (Rn ), theo định lý hội tụ miền gh → fe Lp (Rn ) Khi theo (??), ta có điều phải chứng minh Một vài tính chất đại số ∆U -vành Mệnh đề Cho R vành 2-nguyên thủy Nếu vành đa thức R[x] ∆U -vành, R ∆U -vành Chứng minh R vành 2-nguyên thủy, theo Mệnh đề ??, ∆(R[x]) = ∆(R) + J(R[x]) Mặt khác ta có J(R[x]) = I[x] với I iđêan lũy linh R Bây giờ, ta giả sử R[x] ∆U -vành Khi U (R) ⊆ U (R[x]) = + ∆(R[x]) = + ∆(R) + I[x], điều có nghĩa U (R) ⊆ + ∆(R) + I = + ∆(R) ⊆ U (R), I iđêan lũy linh (nên I ⊆ ∆(R)) Do U (R) = + ∆(R), hay R ∆U -vành Mệnh đề Cho R vành m ∈ N (1) R ∆U -vành R[x]/xm R[x] ∆U -vành (2) R ∆U -vành vành chuỗi lũy thừa R[[x]] ∆U -vành Chứng minh (1) Điều suy từ Mệnh đề ?? (5), từ xR[x]/xm R[x] ⊆ J(R[x]/xm R[x]) (R[x]/xm R[x])/(xR[x]/xm R[x]) ∼ = R (2) Ta xét (x) = xR[[x]] iđêan R[[x]] Khi (x) ⊆ J(R[[x]]) Vì R ∼ = R[[x]]/(x) nên (2) suy từ Mệnh đề ?? (5) Bổ đề Cho R, S vành i : R → S, ϵ : S → R đồng cấu vành thỏa mãn ϵi = idR Khi đó, khẳng định sau (1) ϵ(∆(S)) ⊆ ∆(R) (2) Nếu S ∆U -vành, R ∆U -vành (3) Nếu R ∆U -vành ker ϵ ⊆ ∆(S), S ∆U -vành Chứng minh (1) Dễ thấy, ϵ(U (S)) ⊆ U (R) U (R) = ϵi(U (R)) ⊆ ϵ(U (S)) nên ϵ(U (S)) = U (R) Lấy a ∈ ∆(S) Rõ ràng, a + U (S) ⊆ U (S), ϵ(a) + ϵ(U (S)) ⊆ ϵ(U (S)) ϵ(a) + U (R) ⊆ U (R) Điều có nghĩa ϵ(a) ∈ ∆(R) Do đó, ϵ(∆(S)) ⊆ ∆(R) (2) Cho S ∆U -vành Khi U (S) = + ∆(S), theo (1) U (R) = ϵ(U (S)) = + ∆(S) ⊆ + ∆(R) Do U (R) = + ∆(R) (3) Giả sử R ∆U -vành Ta phải ϵ−1 (U (R)) ⊆ + ∆(S), điều có nghĩa U (S) = + ∆(S) Thật vậy, với y ∈ ϵ−1 (U (R)), ta lấy ϵ(y) ∈ U (R) = 1+∆(R), R ∆U -vành Suy y −1 = i(x)+v , v tùy ý thuộc ker(ϵ) x ∈ ∆(R) Lấy tùy ý u khả nghịch thuộc S Lưu ý x + U (R) ⊆ U (R) Ta có ϵ(i(x) + u) = x + ϵ(u) ∈ x + ϵ(U (S)) = x + U (R) ⊆ U (R) = ϵ(U (S)) i(x) + u = u′ + a u′ ∈ U (S) a ∈ ker(ϵ) Suy y − + u = u′ + a + v ∈ U (S) + ker(ϵ) ⊆ U (S) + ∆(S) theo giả thuyết Từ U (S) + ∆(S) ⊆ U (S) với vành có đơn vị S , ta có y − + u ∈ U (S) với u ∈ U (S) Điều có nghĩa y − ∈ ∆(S) hay y ∈ + ∆(S) Ta có điều phải chứng minh Cho vành R nhóm G, ta ký hiệu vành nhóm X R G RG Một phần tử tùy ý α ∈ RG có dạng α = rg g rg ∈ R g∈G Giả sử R vành M vị nhóm, RM gọi vành vị nhóm định nghĩa giống vành nhóm Mệnh đề Cho R vành, M vị nhóm RM vành vị nhóm Nếu RM ∆U -vành R ∆U -vành 44 Bổ đề Cho R vành, khơng thiết phải có đơn vị, ta có ∆◦ (R) = ∆◦ (R1 ) = ∆(R1 ) Bổ đề rằng, ta mở rộng định nghĩa ∆ cho tất vành, không thiết phải có đơn vị khẳng định Định lý 29 tương đương với vành tùy ý Hơn nữa, điều kiện tương đương đúng, ∆(∆(R)) = ∆(R) Ta biết kết cổ điển Jacobsson J(R) vành J(eRe) = eJ(R)e, với e lũy đẳng R Ta dấu khơng cịn trường hợp tổng qt ∆(R) Tuy nhiên quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) giữ với giả thiết e∆(R)e ⊆ ∆(R) Trong Hệ ?? ta thêm vào giả thiết ∈ U (R) Cho R vành có đơn vị Phần tử a ∈ R gọi quy (tương ứng, quy đơn vị) R a = aua với u ∈ R (tương ứng, u ∈ U (R)) Nếu phần tử vành R quy (tương ứng, quy đơn vị) R gọi vành quy (tương ứng, vành quy đơn vị) Mệnh đề 33 Cho R vành bất kỳ, ta có (1) Cho e2 = e thỏa mãn e∆(R)e ⊆ ∆(R) Khi e∆(R)e ⊆ ∆(eRe) (2) ∆(R) không chứa phần tử lũy đẳng khác không (3) ∆(R) không chứa phần tử quy đơn vị khác khơng Chứng minh (1) Nếu y ∈ U (eRe), y1 = y + (1 − e) ∈ U (R) thỏa mãn y = ey1 e Ta lấy r ∈ e∆(R)e ⊆ ∆(R) ta phần tử khả nghịch y ∈ U (eRe) ta có e − yr ∈ U (eRe) Như trên, lấy y1 = y+1−e ∈ U (R) Từ r ∈ e∆(R)e ⊆ ∆(R), ta 1−y1 r ∈ U (R) Do tồn phần tử b ∈ R thỏa mãn b(1 − y1 r) = e = eb(1 − y1 r)e = eb(e − y1 re)e = eb(e − (y + − e)re) = eb(e − yre) + eb(1 − e)re = ebe(e − yre), dấu cuối r ∈ eRe Điều cho thấy e − yre = e − yr phần tử khả nghịch trái eRe Từ − y1 r ∈ U (R) ta có (1 − y1 r)b = = (1 − (y + − e)r)b = (1 − yr)b Nhân hai vế với e ta e = e(1 − yr)be = (e − yr)be = (e − yr)ebe Điều có nghĩa ebe phần tử khả nghịch phải trái e − yr 45 (2) Nếu e2 = e ∈ ∆(R), − e = e + (1 − 2e) ∈ U (R), − 2e khả nghịch, e = (3) Nếu a ∈ ∆(R) phần tử quy đơn vị, tồn phần tử khả nghịch u ∈ U (R) thỏa mãn au lũy đẳng Theo điều kiện (2) ta suy a phải không Hệ Cho R vành quy đơn vị, ∆(R) = Hệ Giả sử ∈ U (R) Khi e∆(R)e ⊆ ∆(eRe) với e phần tử lũy đẳng R Dưới số ví dụ mà ∆(R) ̸= J(R) Ví dụ (1) Ở Định lý 29, ta nhận thấy A vành vành R thỏa mãn U (R) = U (A), J(A) ⊆ ∆(R) Cụ thể chọn A miền giao hoán với J(A) ̸= R = A[x], ta = J(R) ⊂ J(A) ⊆ ∆(R) (xem [?], Bài tập 4.24) (2) ([?], Ví dụ 2.5) Cho R = F2 < x, y > / < x2 > Khi J(R) = U (R) = + F2 x + xRx Cụ thể, F2 x + xRx chứa ∆(R) J(R) = (3) Cho S vành tùy ý thỏa mãn J(S) = ∆(S) ̸= cho R = M2 (S) Khi đó, theo Định lý ?? (1), ∆(R) = J(R) = 0, đó, e = e11 ∈ R, e∆(R)e = eJ(R)e = J(eRe) = ∆(eRe) ≃ ∆(S) ̸= Điều quan hệ bao hàm e∆(R)e ⊆ ∆(eRe) Mệnh đề ?? nghiêm ngặt trường hợp tổng quát (4) Cho A miền giao hoán với J(A) ̸= S = A[x] Khi đó, theo (1), ̸= J(A) ⊆ ∆(S) rõ ràng J(S) = R = M2 (S), A miền giao hoán địa phương Theo Định lý ??, ∆(R) = J(R) = Lưu ý, tâm Z = Z(R) R = M2 (S) đẳng cấu với S U (Z) = U (R) ∩ Z Do đó, = ∆(R) ∩ Z ⊆ ∆(Z) ≃ J(A) ̸= Do đó, quan hệ bao hàm Hệ ?? nghiêm ngặt J(R) = = J(Z(R)) Một vành R gọi 2-nguyên thủy tập phần tử lũy linh N (R) trùng với nguyên tố B(R), tức R/B(R) vành rút gọn Mệnh đề 34 Giả sử R vành 2-nguyên thủy Khi ∆(R[x]) = ∆(R)+ J(R[x]) 46 Chứng minh Trước tiên ta giả sử R vành rút gọn Khi theo Hệ ?? ta có U (R[x]) = U (R) Do đó, theo định nghĩa ∆(R[x]), ta có ∆(R) ⊆ ∆(R[x]) Lấy a + a0 ∈ ∆(R[x]) a ∈ R[x]x a0 ∈ R Khi đó, u ∈ U (R), a + a0 + u ∈ U (R) Ta có a0 + u ∈ U (R) a = ∆(R) = ∆(R[x]) Bây ta giả sử R vành 2-nguyên thủy Rõ ràng B(R[x]) = B(R)[x] ⊆ J(R[x]) R vành 2-nguyên thủy R/B(R) vành rút gọn J(R[x]) = B(R[x]) = B(R)[x] Áp dụng phần đầu chứng minh cho R/B(R) Mệnh đề 29 (2) ta có ∆(R) + B(R)[x] = ∆(R/B(R)[x]) = ∆(R[x]/J(R[x])) = ∆(R[x])/J(R[x]) Ta có điều cần chứng minh 14 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép toán lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X 47 hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề 35 Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Ai ∈ A∗ Hay A1 , A2, , An ∈ A ⇒ i=1 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép toán lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý 14 Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh 48 Chưa chứng minh Chưa chứng minh 15 ĐẠI SỐ VÀ SIGMA ĐẠI SỐ Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi đại số tập X A∗ thỏa ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng kín với phép tốn lấy phần bù) ∀A, B ∈ A∗ , A ∪ B ∈ A∗ (Đóng kín với phép tốn hợp) Định nghĩa Cho tập X tùy ý khác rỗng Ta gọi P (X) tập hợp tất tập X Gọi A∗ họ tập X A∗ gọi σ - đại số tập X A∗ thỏa mãn ba tiên đề sau: X ∈ A∗ ∀A ∈ A∗ ⇒ Ac ∈ A∗ (Đóng[kín với phép tốn lấy phần bù) ∀A1 , A2 , , An , ∈ A∗ ⇒ Ai ∈ A∗ i≥1 Dựa vào hai định nghĩa ta có nhận xét Nhận xét Khái niệm "đại số tập tập X " khái niệm "σ - đại số tập X " gần với Điều thể qua giống hai tiên đề Sự khác biệt hai khái niệm tiên đề số Đối với "đại số tập X hợp "HỮU HẠN" phần tử thuộc A∗ phần tử thuộc A∗ Còn "σ - đại số tập X " hợp "VÔ HẠN" phần tử A∗ phần tử thuộc A∗ Mệnh đề 36 Cho X tập tùy ý khác rỗng Gọi A∗ "đại số tập X " Khi đó: ∅ ∈ A∗ Hợp hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ n [ ∗ Hay A1 , A2, , An ∈ A ⇒ Ai ∈ A∗ i=1 49 Giao hữu hạn phần tử thuộc A∗ phần tử thuộc A∗ (Đóng kín với phép toán giao) n \ ∗ Ai ∈ A∗ Hay A1 , A2, , An ∈ A ⇒ i=1 Đóng kín với phép tốn hiệu nghĩa là: ∀A, B ∈ A∗ ⇒ A\B ∈ A∗ Đóng kín với phép toán lấy hiệu đối xứng nghĩa là: ∀A, B ∈ A∗ ⇒ A△B ∈ A∗ Định lý 15 Cho tập X khác rỗng Giả sử X có phép tốn α Phép tốn α gọi đóng kín với tập X ta lấy hai phần tử thuộc X , thao tác qua phép toán ta phần tử phần tử thuộc X Để dễ hiểu ta lấy ví dụ đơn giản Trên tập N có phép tốn cộng thơng thường Ta lấy hai phần tử thuộc N (lấy hai số tự nhiên) Dễ thấy cộng hai số tự nhiên số tự nhiên số tự nhiên thuộc N Như ta nói N đóng kín với phép cộng Trong trường hợp tổng qt tập X Tiếp theo ta chứng minh ý mệnh đề Chứng minh: Vì X ∈ A∗ (Tiên đề 1) nên X c = ∅ ∈ A∗ (Tiên đề 2) Ta quy nạp dựa theo tiên đề có điều phải chứng minh ∀A, B ∈ A∗ ta có Ac , B c ∈ A∗ Khi (Ac ∪ B c ) ∈ A∗ ⇒ [(Ac ∪ B c )]c ∈ A∗ hay A ∩ B ∈ A∗ Từ ta quy nạp lên giao hữu hạn phần tử có điều phải chứng minh Chưa chứng minh Chưa chứng minh 16 Các cận cho độ giao hốn tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hốn tương đối nhóm nhóm 50 Mệnh đề 37 Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) |Z(G) ∩ H| + |H| + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề 16 ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H |CG (x)| + x∈K = |K||G| + X |CG (x)| x∈H\K |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do p(|H| − |K|) ⩽ X |CG (x)| ⩽ (|H| − |K|) x∈H\K |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hốn tương đối nhóm nhóm giao hoán Kết sau cho ta cận cho độ giao hoán tương đối nhóm một nhóm khơng giao hốn Mệnh đề 38 Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ 51 Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = 1 X |CG (x)| = |H||G| = |H||G| |H||G| x∈H (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý ?? ta |H| + |H| |Z(G) ∩ H| + |H| Pr(H, G) ⩽ ⩽ = |H| |H| Giả sử H khơng nhóm giao hốn Khi theo Mệnh đề 28 ta có Pr(H) ⩽ Do đó, theo Định lý 18 ta có Pr(H, G) ⩽ Pr(H) ⩽ Vậy ta có điều phải chứng minh Kết sau mơ tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề ?? Mệnh đề 39 Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H không giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý ?? ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| 52 |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề ?? (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| thiết Do = 2, H/(Z(G) ∩ H) ∼ = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| H/(Z(G) ∩ H) ∼ = Z2 × Z2 17 Các cận cho độ giao hoán tương đối nhóm Mệnh đề sau cho ta cận cận cho độ giao hốn tương đối nhóm nhóm Mệnh đề 40 Cho H nhóm G, p ước nguyên tố nhỏ |G| Khi |Z(G) ∩ H| + |H| |Z(G) ∩ H| p(|H| − |Z(G) ∩ H|) + ⩽ Pr(H, G) ⩽ |H| |H||G| 2|H| 53 Chứng minh Đặt K = Z(G) ∩ H Khi theo Mệnh đề 16 ta có X X X |H||G| Pr(H, G) = |CG (x)| = x∈H |CG (x)| + x∈K = |K||G| + X |CG (x)| x∈H\K |CG (x)| x∈H\K Rõ ràng x ∈ H \ K {1} ⊊ CG (x) ⊊ G p ⩽ |CG (x)| ⩽ Do p(|H| − |K|) ⩽ X |CG (x)| ⩽ (|H| − |K|) x∈H\K |G| |G| Cho nên |K||G| + p(|H| − |K|) ⩽ |H||G| X |CG (x)| ⩽ |K||G| + (|H| − |K|) x∈H\K |G| Từ suy |K| p(|H| − |K|) |K| |H| − |K| + ⩽ Pr(H, G) ⩽ + , |H| |H||G| |H| 2|H| ta có cơng thức cần chứng minh Rõ ràng độ giao hoán tương đối nhóm nhóm giao hốn Kết sau cho ta cận cho độ giao hốn tương đối nhóm một nhóm khơng giao hốn Mệnh đề 41 Cho G nhóm khơng giao hốn H nhóm G Khi (i) Nếu H ⊆ Z(G) Pr(H, G) = Hơn nữa, H nhóm khơng giao hốn Pr(H, G) ⩽ (ii) Nếu H ⊈ Z(G) Pr(H, G) ⩽ Chứng minh X (i) Vì H ⊆ Z(G) nên |CG (x)| = |H||G| Do x∈H Pr(H, G) = X |CG (x)| = |H||G| = |H||G| |H||G| x∈H 54 (ii) Giả sử H ⊈ Z(G) Khi dó Z(G) ∩ H ⊊ H , Cho nên |Z(G) ∩ H| ⩽ |H| Áp dụng Định lý ?? ta |H| + |H| |Z(G) ∩ H| + |H| Pr(H, G) ⩽ ⩽ = |H| |H| Giả sử H khơng nhóm giao hốn Khi theo Mệnh đề 28 ta có Pr(H) ⩽ Do đó, theo Định lý 18 ta có Pr(H, G) ⩽ Pr(H) ⩽ Vậy ta có điều phải chứng minh Kết sau mô tả cấu trúc nhóm trường hợp đạt đươc cận Mệnh đề ?? Mệnh đề 42 Cho H nhóm nhóm G Khi đó: H/(Z(G) ∩ H) ∼ = Z2 ; (ii) Nếu Pr(H, G) = H khơng giao hốn H/(Z(G)∩H) ∼ = Z2 × Z2 (i) Nếu Pr(H, G) = Chứng minh (i) Giả sử Pr(H, G) = Khi đó, theo Định Lý ?? ta có |Z(G) ∩ H| + |H| |Z(G) ∩ H| = Pr(H, G) ⩽ = + 2|H| 2|H| Từ suy |H| ⩽ |Z(G) ∩ H| |H| = |H| = |Z(G) ∩ H|, từ suy H ⊆ Z(G) Khi |Z(G) ∩ H| theo Mệnh đề ?? (i) ta có Pr(H, G) = Điều mâu thuẫn với giả |H| thiết Do = 2, H/(Z(G) ∩ H) ∼ = Z2 , ta có điều |Z(G) ∩ H| Nếu phải chứng minh 55 (ii) Giả sử Pr(H, G) = Bằng cách lập luận tượng tự ta suy |H| ⩽ |Z(G) ∩ H| Vì Z(G) ∩ H ⩽ Z(H) nên H/Z(H) ⩽ H/(Z(G) ∩ H) Vì H khơng giao hốn nên H/Z(H) khơng nhóm xiclíc Do H/(Z(G) ∩ H) khơng nhóm xiclíc Từ suy |H| ⩾ |Z(G) ∩ H| Điều chứng tỏ |H| = 4, |Z(G) ∩ H| H/(Z(G) ∩ H) ∼ = Z2 × Z2 18 Độ giao hoán tương đối mở rộng nhóm Trong mục ta nghiên cứu độ giao hốn tương đối mở rộng nhóm Mệnh đề 43 Cho H1 H2 hai nhóm G cho H1 ⩽ H2 Khi Pr(H1 , H2 ) ⩾ Pr(H1 , G) ⩾ Pr(H2 , G) Chứng minh Theo Bổ đề 13, với x ∈ G ta có |H1 : CH1 (x)| ⩽ |H2 : CH2 (x)| ⩽ |G : CG (x)| Từ suy |CH1 (x)| |C (x)| |C (x)| ⩾ H2 ⩾ G với x ∈ G |H1 | |H2 | |G| 56 Theo Mệnh đề 16 ta có Pr(H1 , H2 ) = X X |CH2 (x)| |CH2 (x)| = |H1 ||H2 | |H1 | |H2 | x∈H1 ⩾ x∈H1 X X |CG (x)| = |CG (x)| = Pr(H1 , G) |H1 | |G| |H1 ||G| x∈H1 x∈H1 Theo Mệnh đề 16 ta có X Pr(H1 , G) = ⩾ |H1 ||G| |CH1 (y)| = y∈G X |CH2 (y)| |G| y∈G |H2 | X |CH1 (y)| |G| |H1 | y∈G = X |CH2 (y)| = Pr(H2 , G) |H2 ||G| y∈H2 Vậy ta có điều phải chứng minh Mệnh đề 44 Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi Pr(H, G) ⩽ Pr(H/N, G/N ) Pr(N ) Hơn nữa, dấu đẳng thức xảy N ∩ [H, G] = Để chứng minh Mệnh đề ta cần bổ đề sau Bổ đề Cho H N nhóm nhóm G cho N ⩽ H N ◁ G Khi CH (x)N ⩽ CH/N (xN ) N với x ∈ G Hơn nữa, đẳng thức xảy N ∩ [H, G] = Chứng minh Lấy x ∈ G Giả sử y ∈ CH (x) Khi yN ∈ CH (x)N , N ta có xN yN = (xy)N = (yx)N = yN xN C (x)N Do yN ∈ CH/N (xN ) Từ suy H ⩽ CH/N (xN ) N Giả sử N ∩ [H, G] = Ta chứng minh xảy dấu đẳng thức Thật vậy, lấy x ∈ G Giả sử yN ∈ CH/N (xN ) với y ∈ H Khi xN yN = yN xN , (xy)N = (yx)N Từ suy y −1 x−1 yx = (xy)−1 (yx) ∈ N 57 Điều chứng tỏ y −1 x−1 yx ∈ N ∩[H, G] Do theo giả thiết, ta có y −1 x−1 yx = hay xy = yx Từ suy y ∈ CH (x) Do yN ∈ CH (x)N N Điều chứng tỏ CH/N (xN ) ⩽ CH (x)N N Vậy ta có điều phải chứng minh Bây ta chứng minh Mệnh đề Chứng minh Từ Mệnh đề 16 ta có X X |CH (y)| X |H||G| Pr(H, G) = |CH (y)| = y∈G = S∈G/N y∈S X X S∈G/N y∈S = |CN (y)| |CN (y)| X X |CH (y)N | |CH (y)| |CN (y)| = |CN (y)| |N ∩ CH (y)| |N | S∈G/N y∈S