1. Trang chủ
  2. » Luận Văn - Báo Cáo

Lặp picacrd cho hàm tăng mạnh

96 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 96
Dung lượng 519,14 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: LẶP PICACRD CHO HÀM TĂNG MẠNH VÀ LIPSIT GIẢ CO MẠNH TRONG KHÔNG GIAN BANACH TÙY Ý LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Giải tích lồi nhánh nhỏ giải tích đại, nghiên cứu tập lồi hàm lồi với vấn đề liên quan Giải tích lồi có vai trị quan trọng nhiều lĩnh vực khác toán học ứng dụng, đặc biệt tối ưu hoá, bất đẳng thức biến phân, tốn cân Có thể nói, Giải tích lồi sở lý thuyết quan trọng lĩnh vực tối ưu hoá số lĩnh vực khác Ngồi vai trị quan trọng tốn ứng dụng trên, Giải tích lồi sở để để phát triển nhánh toán học lý thuyết khác Giải tích phức đặc biệt lý thuyết vị lý thuyết đa vị 861 2 Nhóm giả nhị diện Mệnh đề Cho nhóm giả nhị diện n SD2n = ⟨r, s | r2 = s2 = 1, s−1 rs = r2 n−1 −1 ⟩ với n ⩾ 3, H nhóm SD2n Khi (i) Nếu H = Rk với k | 2n , ⩽ k ⩽ 2n ( Pr(H, SD2n ) = k = 2n , k + n k ̸= 2n 2 (ii) Nếu H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Pr(Tl , SD2n ) = 1 + n 2 (iii) Nếu H = Ui,j với i|2n , ⩽ i ⩽ 2n − 1, ⩽ j ⩽ i −  1   + n i = 2n−1 , 2 Pr(H, SD2n ) =   + i + i ̸= 2n−1 2n+1 Chứng minh (i) Giả sử H = Rk với k|2n , ⩽ k ⩽ 2n Ta xét hai trường hợp k sau Trường hợp 1: k = 2n Khi Rk = {1} Rõ ràng Pr(Rk , SD2n ) = Trường hợp 2: k ̸= 2n Theo Mệnh đề ?? ta có |Rk | = 2n 2n = (2n , k) k Khi đó, theo Mệnh đề ?? ta có X n−1 |CSD2n (x)| = |CSD2n (1)| + |CSD2n (r2 X )| + |CSD2n (rik )| n x∈Rk 1⩽i⩽ 2k −1 i̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n n−1 k  − |R1 | k 2n 2n+1 (2n−1 + k) − 2n = k k  Từ suy Pr(Rk , SD2n ) = X |CSD2n (x)| |Rk ||SD2n | x∈Rk = 2n+1 (2n−1 + k) 2n−1 + k k k · = = + n n n+1 n ·2 k 2 (ii) Giả sử H = Tl với ⩽ l ⩽ 2n − l chẵn, ⩽ l ⩽ 2n−1 − l lẻ Khi l chẵn với ⩽ l ⩽ 2n − Theo Mệnh đề ??, ta có |Tl | = Do Tl = {1, rl s} Khi đó, theo Mệnh đề 25 ta có X 1 Pr(Tl , SD2n ) = = |Tl ||SD2n | |CSD2n (x)| = · 2n+1 x∈Tl |CSD2n (1)| + |CSD2n (rl s)|  1 1 n+1 n | + |U n−1 | = |SD (2 + 4) = + 2 ,l · 2n+1 · 2n+1 2n Khi l lẻ với ⩽ l ⩽ 2n−1 − Theo Mệnh đề ?? ta có |Tl | = Do n−1 Tl = {1, rl s, r2 n−1 , rl+2 s} Khi đó, theo Mệnh đề 25 ta có Pr(Tl , SD2n ) = X |CSD2n (x)| |Tl ||SD2n | x∈Tl  l 2n−1 l+2n−1 |C )| + |C s)| n (1)| + |CSD2n (r s)| + |CSD2n (r n (r SD SD 2 · 2n+1  n n n−1 n−1 n−1 |SD | + |U | + |SD | + |U | = 2 ,l ,l+2 · 2n+1  1 n+1 n+1 = + + + = + n n+1 4·2 2 =   Như hai trường hợp l ta có Pr(Tl , SD2n ) = 1 + n 2 (iii) Giả sử H = Ui,j với ⩽ i ⩽ 2n − 1, i|2n , ⩽ j ⩽ i − Ta xét hai trường hợp i sau Trường hợp 1: i = 2n−1 Theo Mệnh đề ??, ta có 2n+1 2n+1 = n−1 = |Ui,j | = i Do Ui,j = {1, r2 n−1 , rj s, r2 n−1 +j s} Khi đó, theo Mệnh đề 25 ta có Pr(Ui,j , SD2n ) = X |CSD2n (x)| |Ui,j ||SD2n | x∈Ui,j 2n−1 j 2n−1 +j |C )| + |C s)| n (1)| + |CSD2n (r n (r s)| + |CSD2n (r SD SD 2 · 2n+1  n | + |SD2n | + |U n−1 | + |U n−1 n−1 = |SD | 2 ,j ,2 +j · 2n+1 1 (2n+1 + 2n+1 + + 4) = + n = n+1 4·2 2 =   Trường hợp 2: i ̸= 2n−1 Theo Mệnh đề ?? ta có |Ui,j | = Do  Ui,j = li r ,r li+j 2n+1 i  n s ⩽ l ⩽ −1 i 28 (2) ⇒ (1) Giả sử R ∆U -vành Ta mở rộng Dorroh Z ⊕ R ∆U -vành, nghĩa U (Z ⊕ R) = + ∆(Z ⊕ R) Lấy ω ∈ U (Z ⊕ R) Khi đó, ω có dạng ω = (1, a) ω = (−1, b) với a, b ∈ R Trường hợp ω = (1, a) ∈ U (Z ⊕ R): Lấy x = −a, tồn (1, −y) Z ⊕ R thỏa mãn (1, −x)(1, −y) = (1, 0) = (1, −y)(1, −x) Điều có nghĩa x◦y = = y ◦x x ∈ U◦ (R), 1+a = 1−x ∈ U (R) Từ R ∆U -vành, 1+a ∈ 1+∆(R) Vì a ∈ ∆(R) a+U (R) ⊆ U (R) Tiếp theo ta chứng minh (1, a) ∈ + ∆(Z ⊕ R), nghĩa ta chứng minh (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Với α ∈ U (Z ⊕ R), α có dạng (1, u) (−1, v) với u, v ∈ R Nếu α = (1, u), từ chứng minh ω ta có + u ∈ U (R) Từ a + U (R) ⊆ U (R), ta lấy a + + u ∈ U (R), −(a + u) ∈ U◦ (R) Lấy b ∈ R với (−(a + u)) ◦ b = = b ◦ (−(a + u)) Đặt c = −(a + u) Khi c ◦ b = b ◦ c (1, a + u)(1, −b) = (1, −c)(1, −b) = (1, −b ◦ c) = (1, 0) = (1, −b)(1, a + u) Ta suy (1, a + u) ∈ U (Z ⊕ R) Hơn nữa, ta có (0, a) + α = (1, a + u) ∈ U (Z ⊕ R), nghĩa (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Nếu α = (−1, v) ∈ U (Z⊕R), (−1, v)(−1, d) = (1, 0) = (−1, d)(−1, v) với d ∈ R Ta suy v◦d = = d◦v = v ∈ U◦ (R), 1−v ∈ U (R) Khi đó, v − ∈ U (R) Từ a + U (R) ⊆ U (R), ta có a + v − ∈ U (R) − (a + v) ∈ U (R) Do đó, a + v ∈ U◦ (R) Nghĩa tồn e ∈ R thỏa mãn (a + v) ◦ e = = e ◦ (a + v), (−1, a + v)(−1, e) = (1, −(a + v) ◦ e) = = (−1, e)(−1, a+v) Điều có nghĩa (−1, a+v) ∈ U (Z ⊕R) Hơn nữa, ta có (0, a) + α = (−1, a + v) ∈ U (Z ⊕ R) Do đó, (0, a) + U (Z ⊕ R) ⊆ U (Z ⊕ R) Trường hợp ω = (−1, a) ∈ U (Z ⊕ R): Tương tự Trường hợp Cho C vành vành D, tập hợp R[D, C] := {(d1 , , dn , c, c ) : di ∈ D, c ∈ C, n ≥ 1}, với phép cộng phép nhân định nghĩa theo thành phần gọi vành mở rộng đuôi ký hiệu R[D, C] 29 Mệnh đề 16 R[D, C] ∆U -vành D C ∆U -vành Chứng minh (:⇒) Đầu tiên ta chứng minh D ∆U -vành Lấy u tùy ý thuộc U (D) Khi u¯ = (u, 1, 1, 1, ) ∈ U (R[D, C]) Theo giả thuyết, u¯ ∈ + ∆(R[D, C]), (u − 1, 0, 0, 0, ) + U (R[D, C]) ⊆ U (R[D, C]) Do đó, với v ∈ U (D), (u − + v, 1, 1, 1, ) = (u − 1, 0, 0, 0, ) + (v, 1, 1, 1, ) ∈ U (R[D, C]) Vì u − + v ∈ U (D), nghĩa u − ∈ ∆(D) u ∈ + ∆(D) Để C ∆U -vành, ta lấy v ∈ U (C) thỏa mãn v¯ = (1, , 1, v, v, ) ∈ U (R[D, C]) chứng minh (⇐:) Giả sử D C ∆U -vành Lấy u¯ = (u1 , u2 , , un , v, v, ) ∈ U (R[D, C]), ui ∈ U (D) với ≤ i ≤ n v ∈ U (C) ⊆ U (D) Ta u¯ ∈ ∆(R[D, C]) u¯ − + U (R[D, C]) ⊆ U (R[D, C]) Thật vậy, tất a¯ ∈ (a1 , a2 , , am , b, b, ) ∈ U (R[D, C]) ∈ U (D), ≤ i ≤ m b ∈ U (C) ⊆ U (D) Lấy k = max{m, n} Khi đó, ta có u1 , u2 , , un ∈ U (D), v ∈ U (C) ⊆ U (D) ta suy u1 − + U (D), u2 − + U (D), , un − + U (D) ⊆ U (D), v − + U (D) ⊆ U (D) v − + U (C) ⊆ U (C) Ta có u¯ − = (u1 − 1, u2 − 1, , un − 1, un+1 − 1, , uk − 1, v − 1, v − 1, ), với uj = v j ≥ k , a ¯ = (a1 , a2 , , am , am+1 , , ak , b, b, ), với al = b với l ≥ m Khi ta có u¯ − + a ¯ = (u1 − + a1 , u2 − + a2 , , uk − + ak , v − + b, v − + b, ) Lưu ý ui − + ∈ U (D) với ≤ i ≤ k v − + b ∈ U (C) Ta suy u¯ − + a ¯ ∈ R[U (D), U (C)] = U (R[C, D]) Vì u¯ − ∈ ∆(R[D, C]) u¯ ∈ + ∆(R[D, C]), hay R[D, C] ∆U -vành 30 Định lý tồn cho hệ thống tuyến tính Định lý 11 (Định lý tồn cho hệ thống tuyến tính) Cho I đoạn thực giả sử A ∈ C(I, Mn (F)), B ∈ C(I, F n ) Cho τ ∈ I, ξ ∈ F n tồn giải pháp X (IV P) đoạn I Chứng minh Cho t ∈ I , giả sử J = [c; d] đoạn bị chặn I cho τ, π ∈ J , Bởi định lý 7.3 tồn hàm Xj khác biệt đoạn [a, b] cho XJt (s) = A(s)XJ (s) + B(s), XJ (τ ) = ξ, s∈J Định nghĩa X(t) = Xj(t) Nếu ta chọn J1 = [c1 , c2 ] ⊂ I cho τ, t ∈ J1 , J1 ∩ J đoạn bị chặn chứa τ, t kết áp dụng cho đoạn cho thấy XJ1 (s) = XJ (s), s ∈ J1 ∩ J Đặc biệt, XJ1 (t) = XJ (t) Để định nghĩa X(t) không phụ thuộc vào J chọn Vì X có tính khả vi [a, b] thỏa mãn X ′ (t) = A(t)X(t) + B(t), X(τ ) = ξ, t∈I Nó giải pháp (IV P) đoạn I Nó nhất, Y mơt giải pháp I t thuộc I có đoạn nhỏ J chứa τ, t kết cho J ngụ ý X(t) = Y (t) Trước tiếp tục phát triển lý thuyết, xem xét ví dụ khác Xét tốn với n = : x′ = 3t2 x, x(0) = 1, t∈R Phương trình tích phân tương ứng Z t 3s2 x(s)ds = (T x)(t), x(t) = + t ∈ R Nếu x0 (t) = 1, Z xm+1 (t) = + t 3s2 xm (s)ds, m = 0, 1, 31 Do Z x1 (t) = + t 3s2 ds = + t3 , t Z 3s2 [1 + s3 ]ds = + t3 + t6 /2, x2 (t) = + Z x3 (t)1 + t 3s2 [1 + s3 + s6 /2]ds = + t3 + t6 /2 + t9 /6, Và quy nạp cho thấy xm = + t3 + (t3 )m (t3 )2 (t3 )3 + + ··· + 3! m! Chúng ta nhận xm (i) môt tổng riêng cho việc triển khai dãy số hàm x(t) = et Dãy số hội tụ đến x(t) cho t thuộc R, hàm x(t) kết vấn đề Nhìn lại phương pháp chứng minh định lý 7.3, khơng khó để nhận thấy lựa chọn hàm liên tục ban đầu X0 (t) dần đến giải pháp X(t) Thực sự, bất đẳng thức áp dụng Z t |Xm+1 (t) − Xm | ≤ ∥A∥∞ |Xm (s) − Xm−1 (s)|ds, m ≥ 1, t ∈ I τ Sự khác biệt phát sinh khác biệt ban đầu Xi (t) − X0 (t) Ước lượng thu từ lập luận quy nạp sau trở thành h im |Xm+1 (t) − Xm | ≤ ∥X1 − X0 ∥∞ ∥A∥∞ [t − τ ] /m! Phần lại lập luận diễn trước đây, đưa giải pháp X(t) (7.2) Nếu (IV P) xem xét đoạn I nào, ta ước lượng khoảng cách Xm (t) X(t) đoạn nhỏ J = [a, b] nằm I chứa τ Với k > m ∥X − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥Xk − Xm ∥∞,J ≤ ∥X − Xk ∥∞,J + ∥(Xk − Xk−1 ) + (Xk−1 − Xk−2 ) + · · · + (Xm+1 − Xm )∥∞,J 32 Và sử dụng bất đẳng thức tam giác lấy giới hạn (7.10) ngụ ý ∥X − Xm ∥∞,J ≤ ∞ X ∥Xk+1 − Xk ∥∞,J , (7.11) k=m ≤ ∥X1 − X0 ∥∞,J ∞ h X ∥A∥∞,J [b − τ ] im /m! k=m Tất nhiên, chuỗi cuối lại phần lại chuỗi cho hàm mũ (∥A∥∞,J [b − τ ]) Do (7.11) ngụ ý Xm → X định mức tối đa J Chúng tơi tóm tắt định lý sau Định lý 12 (Định nghĩa xấp xỉ liên tiếp bởi) Z t Xm+1 (t) = ξ + [A(s)Xm (s) + B(s)]ds, t∈I τ Tại X0 ∈ C(I, F n ) tùy ý Nếu X(t) giải pháp (IV P) I , Xm → X đồng ∥X − Xm ∥∞,J → 0, k→∞ Trên đoạn nhỏ J ⊂ I chứa τ 10 Tính liên tục giải pháp Trở lại tình Định lý 7.3, [a, b] đoạn đóng, giải pháp X(t) tốn giá trị ban đầu X ′ = A(t)X + B(t), X(τ ) = ξ, t ∈ I, IV P Rõ ràng phụ thuộc vào τ ∈ I, ξ ∈ F n , A ∈ C(I, Mn (F)) B ∈ C(I, F n ) Kết phần khẳng định t ∈ I Giá trị X(t) hàm liên tục biến Phân tích phụ thuộc bắt đầu ước lượng cho ∥X∥∞ điều suy cách sử dụng phương pháp chứng minh Định lý 7.3 Bắt đầu với việc xấp xỉ từ Z t X0 (t) = ξ + B(s)ds, τ 33 Kết X(t) = lim Xk (t) k→∞ Sau đáp ứng ước lượng   k−1 X (Xm+1 (t) − xm (t)) ∥X∥∞ = ∥ lim Xk ∥ = lim X0 (t) + k→∞ k→∞ m=0 ≤ ∥X0 ∥ + ∞ X ∞ ∥Xm+1 − Xm ∥∞ m=0 Bây áp dụng bất đẳng thức (7.8), cho kết ∥X∥∞ ≤ ∥X0 ∥∞ + ∥X0 ∥∞ ∞ X ∥A∥m+1 [b − τ ]m+1 ∞ m=0 (m + 1)! = ∥X0 (t)∥∞ exp(∥A∥∞ [b − τ ]) Từ Z t ∥X0 (t)∥∞ = ξ + B(s)ds τ ∞ ≤ |ξ| + |b − a|∥B∥∞ , Ước lượng mong muốn cho ∥X∥∞   ∥X∥∞ ≤ |ξ| + |b − a|∥B∥∞ exp(∥A∥∞ [b − a]) (7.12) Ước lượng đơn giản (7.12) sử dụng để X hàm liên tục chung tất biến Do đó, thay đổi nhỏ t, A, b, τ, ξ tạo thay đổi nhỏ X Nếu ký hiệu giải pháp (IV P) thời điểm t X(t, A, B, τ, ξ), sau đó, định lý 7.6 cung cấp ý nghĩa xác cho phát biểu X(s, C, D, σ, η) → X(t, A, B, τ, ξ), (s, C, D, σ, η) → (t, A, B, τ, ξ) Đó là, X liên tục (t, A, B, τ, ξ) 34 Định lý 13 Đặt I đoạn [a, b] bị chặn, A, C ∈ C(I, Mn (F)), B, D ∈ C(I, F n ), τ, σ ∈ I , ξη ∈ F n Giả định X kết X ′ = A(t)X + B(t), X(τ ) = ξ, t∈I Cho t thuộc I e > 0, có tồn ϵ > Y kết Y ′ = C(t)Y + D(t), y(σ) = η, t∈I |s − t| < δ, ∥C − A∥∞ < δ, |σ − τ | < δ, ∥D − B∥∞ < δ |η − ξ| < δ Vậy |Y (s) − X(t)| < ϵ (7.14) Chứng minh Hiệu hai phương trình cho X(t) Y (t) ta (Y − X)′ = C(t)(Y − X) + (C(t) − A(t))X + D(t) − B(t) Do Z = Y − X Z đáp ứng giá trị toán ban đầu Z ′ = C(t)Z + E(t), Z(σ) = η − X(σ) Nơi E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Chúng ta áp dụng đánh giá (7.12) cho Z thu   ∥Y − X∥∞ = ∥Z∥∞ ≤ |Z(σ)| + (b − a)∥E∥∞ exp(∥C∥∞ [b − a]) (7.15) Đặt e > cho Ta thấy |Y (s) − X(t)| < |Y (s) − X(s)| + |X(s) − X(t)| ≤ ∥Y − X∥∞ + |X(s) − X(t)| (7.16) Từ X liên tục t, cho e > có ϵ > |s − t| < δ1 Ngụ ý |X(s) − X(t)| < ϵ Mà |Z(σ)| = |η − X(σ)| ≤ |η − ξ| + |X(τ ) − X(σ)| 35 Từ X liên tục t, cho e > có ϵ2 > |η − ξ| < δ2 , Ngụ ý |τ − σ| < δ2 ϵ |Z(σ)| exp(∥C∥∞ [b − a]) < Cuối cùng, từ E(t) = (C(t) − A(t))X(t) + D(t) − B(t) Có ϵ3 ∥C − A∥∞ < ϵ3 , Ngụ ý ∥D − B∥∞ < ϵ3 ϵ |b − a|∥E∥∞ exp(∥C∥[b − a]) < Và chọn δ > thoả mãn δ = min(δ1 , δ2 , δ3 ) Vậy (7.13) hợp lệ cho ϵ (7.14) sau từ (7.15)-(7.19) 11 Mở rộng Dorroh mở rộng tail ring ∆U vành Mệnh đề 17 Cho R vành, điều kiện sau tương đương (1) R ∆U -vành (2) ∆(R) = U◦ (R) (3) Ánh xạ ε : (∆(R), ◦) → (U (R), ) cho ε(x) = − x đẳng cấu nhóm Định lý 14 Cho R vành có đơn vị Khi điều kiện sau tương đương (1) Mở rộng Dorroh Z ⊕ R ∆U -vành (2) R ∆U -vành Mệnh đề 18 R[D, C] ∆U -vành D C ∆U -vành 36 11.1 Các nhóm vành Định lý 15 Cho G nhóm hữu hạn với cấp + 2n R ∆U -vành Khi RG ∆U -vành agumentation iđêan ∇(RG) ∆U -vành Bổ đề Nếu G locally finite 2-group R ∆U -vành với ∆(R) lũy linh, ∇(RG) ⊆ ∆(RG) Định lý 16 Cho R ∆U -vành G locally finite 2-group Nếu ∆(R) lũy linh, RG ∆U -vành Hệ Cho R right (or left) perfect ring G locally finite 2-group Khi đó, R ∆U -vành RG ∆U -vành 12 Độ giao hốn tương đối nhóm Ta bắt đầu định nghĩa độ giao hoán nhóm Định nghĩa Cho G nhóm H nhóm G Ký hiệu C = {(h, g) ∈ H × G | hg = gh} Độ giao hoán tương đối nhóm H G, ký hiệu Pr(H, G), định nghĩa sau Pr(H, G) = |C| |H||G| Từ Định nghĩa 12 ta thấy Pr(G, G) = Pr(G), Pr(G) độ giao hốn nhóm G định nghĩa Định nghĩa ?? Sau số ví dụ độ giao hốn tương đối số nhóm Ví dụ Xét nhóm nhị diện D3 cho phần tử sinh hệ thức xác định sau D3 = ⟨r, s | r3 = s2 = 1, s−1 rs = r−1 ⟩ Khi D3 = {1, r, r2 , s, rs, r2 s} phép nhân phần tử D3 cho bảng sau 37 • 1 r r2 s rs r2 s r r2 s rs r2 s r r r2 r2 r2 r rs r2 s s r s s rs s s rs r2 s r r2 r2 s r2 s s rs r r2 r rs rs r2 s s r2 Bằng cách đếm trực tiếp theo Định nghĩa 12 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨s⟩ H = ⟨rs⟩ H = ⟨r2 s⟩ H = D3 |C| 12 8 18 Pr(H, D3 ) 3 3 Ví dụ Xét nhóm nhị diện D4 cho phần tử sinh hệ thức xác định sau D4 = ⟨r, s | r4 = s2 = 1, s−1 rs = r−1 ⟩ Khi D4 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử D4 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs r2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r r2 r3 rs rs r2 s r3 s s r3 r r2 r2 s r2 s r3 s s rs r2 r3 r3 s r3 s s rs r2 s r r2 r3 r Bằng cách đếm trực tiếp theo Định nghĩa 12 ta có bảng sau 38 Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 , s⟩ H = ⟨r2 , rs⟩ H = ⟨s⟩ |C| 24 24 24 12 Pr(H, D4 ) 4 4 Các nhóm H = ⟨rs⟩ H = ⟨r2 s⟩ H = ⟨r3 s⟩ H = ⟨r2 ⟩ H = D4 |C| 12 12 12 16 40 Pr(H, D4 ) 4 Ví dụ Xét nhóm quaternion Q8 cho phần tử sinh hệ thức xác định sau Q8 = ⟨r, s | r4 = 1, s2 = r2 , s−1 rs = r−1 ⟩ Khi Q8 = {1, r, r2 , r3 , s, rs, r2 s, r3 s} phép nhân phần tử Q8 cho bảng sau • 1 r r2 r3 s rs r2 s r3 s r r2 r3 s rs s2 s r3 s r r r2 r3 r2 r2 r3 r3 r3 1 r r2 s r3 s s rs r r2 rs r2 s r3 s s r s s rs r2 s s s rs r2 s r3 s r2 r3 rs rs r2 s r3 s s r r2 r3 r r2 s r2 s r3 s s rs r r2 r3 r3 s r3 s s rs r2 s r3 r r2 Bằng cách đếm trực tiếp theo Định nghĩa 12 ta có bảng sau Các nhóm H = {1} H = ⟨r⟩ H = ⟨r2 ⟩ H = ⟨s⟩ H = ⟨rs⟩ H = Q8 |C| 24 16 24 24 40 Pr(H, Q8 ) 4 39 Từ định nghĩa độ giao hốn tương đối ta có kết sau Mệnh đề 19 Cho G nhóm H nhóm G Khi X X Pr(H, G) = |H||G| |CG (x)| = x∈H |H||G| |CH (y)| y∈G Chứng minh Ký hiệu C = {(x, y) ∈ H × G | xy = yx} Với x ∈ H số cặp phần tử (x, y) ∈ C |CG (x)| CG (x) tâm hóa x G Với y ∈ G số cặp phần tử (x, y) ∈ C |CH (y)| CH (y) tâm hóa y H Cho nên ta có X X |C| = |CG (x)| = x∈H |CH (y)| y∈G Từ suy cơng thức cần chứng minh Kết sau cho ta công thức tính độ giao hốn tương đối nhóm chuẩn tắc nhóm nhờ số lớp liên hợp Mệnh đề 20 Cho G nhóm H nhóm chuẩn tắc G Khi Pr(H, G) = k |H| k số lớp liên hợp G nằm H Chứng minh Với x ∈ G bất kỳ, ký hiệu lớp liên hợp x G O(x) Khi ta có |O(x)| = |G : CG (x)| Gọi x1 , x2 , , xk phần tử đại diện lớp liên hợp G nằm H Vì H ◁ G với x ∈ H ta có O(x) ⊂ H Do đó, theo Mệnh đề 25, ta có k X X Pr(H, G) = |CG (x)| = |O(xi )||CG (xi )| |H||G| |H||G| = |H||G| x∈H k X i=1 i=1 k X k |G : CG (xi )||CG (xi )| = |G| = |H||G| |H| i=1 40 Vậy ta có điều phải chứng minh Ta cần bổ đề sau phép chứng minh kết so sánh độ giao hốn tương đối nhóm nhóm với độ giao hốn nhóm nhóm Bổ đề Cho H nhóm G Khi với phần tử x ∈ G |H : CH (x)| ⩽ |G : CG (x)| Hơn nữa, dấu đẳng thức xảy G = HCG (x) Chứng minh Lấy x ∈ G Khi đó, theo Mệnh đề ??, ta có |H||CG (x)| = |HCG (x)| ⩽ |G| |H ∩ CG (x)| Do |H| |G| ⩽ |H ∩ CG (x)| |CG (x)| Mà H ∩ CG (x) = {a ∈ H | a ∈ CG (x)} = CH (x), từ suy |H| |G| ⩽ |CG (x)| |CH (x)| Do đó, theo Định lý Lagrange ta có |H : CH (x)| ⩽ |G : CG (x)| Từ lập luận ta thấy dấu đẳng thức xảy G = HCG (x) Vậy ta có điều phải chứng minh Mệnh đề sau cho ta đánh giá độ giao hốn tương đối nhóm nhóm nhờ độ giao hốn nhóm nhóm Mệnh đề 21 Cho H nhóm nhóm G Khi Pr(G) ⩽ Pr(H, G) ⩽ Pr(H) 41 Chứng minh Theo Mệnh đề 25 ta có X Pr(H, G) = |H||G| |CG (x)| = x∈H X |CG (x)| |H| |G| x∈H Theo Bổ đề ta có |CG (x)| |C (x)| ⩽ H với x ∈ H |G| |H| Từ suy Pr(H, G) ⩽ X |CH (x)| X = |CH (x)| = Pr(H) |H| |H| |H| x∈H x∈H Theo Mệnh đề 25 ta có Pr(H, G) = X X |CH (y)| |CH (y)| = |H||G| |G| |H| y∈G y∈G Theo Bổ đề ta có |CH (y)| |C (y)| ⩾ G với y ∈ G |H| |G| Từ suy Pr(H, G) ⩾ X X |CG (y)| = |CG (y)| = Pr(G) |G| |G| |G| y∈G y∈G Vậy ta có điều phải chứng minh Mệnh đề sau cho ta điều kiện cần đủ để xảy đẳng thức Mệnh đề 22 Cho H nhóm nhóm G Khi (i) Pr(H, G) = Pr(H) G = HCG (x) với x ∈ H (ii) Pr(H, G) = Pr(G) G = HCG (x) với x ∈ G Chứng minh (i) Từ phép chứng minh Mệnh đề 27 ta thấy Pr(H, G) = Pr(H) |CH (x)| |CG (x)| = với x ∈ H |H| |G| 42 Theo Bổ đề 8, điều xảy G = HCG (x) với x ∈ H Vậy ta có điều phải chứng minh (ii) Lập luận hoàn toàn tương tự ta có điều phải chứng minh Từ Mệnh đề 28 ta có hệ sau Hệ Cho H nhóm nhóm G Nếu Pr(H, G) = Pr(G) Pr(H) = Pr(G) Mệnh đề sau cho ta điều kiện đủ để không xảy đẳng thức Mệnh đề 27 Mệnh đề 23 Cho H nhóm nhóm G Nếu H khơng chuẩn tắc G Pr(G) < Pr(H, G) < Pr(H) Chứng minh Giả sử H không chuẩn tắc G Trước tiên ta chứng minh tồn x ∈ H cho G ̸= HCG (x) Thật vậy, giả sử trái lại G = HCG (x) với x ∈ H Lấy g ∈ G x ∈ H Khi g −1 ∈ G = HCG (x) Giả sử g −1 = với h ∈ H, a ∈ CG (x) Khi ta có g −1 xg = (ha)x(ha)−1 = haxa−1 h−1 = hxaa−1 h−1 = hxh−1 ∈ H Điều chứng tỏ H ◁ G, trái với giả thiết Vậy ta có điều phải chứng minh Do đó, theo Bổ đề 28 ta có Pr(H, G) ̸= Pr(H) Pr(H, G) ̸= Pr(G) Kết hợp điều với Mệnh đề ta có bất đẳng thức cần chứng minh 13 Các tính chất tổng quát ∆U -vành Ta biết + J(R) ⊆ U (R) Vành R gọi U J -vành U (R) ⊆ + J(R), nghĩa + J(R) = U (R) Lưu ý R U J -vành ∆(R) = J(R) Một vành R gọi ∆U -vành + ∆(R) = U (R) Mệnh đề 24 Một vành R ∆U -vành U (R)+U (R) ⊆ ∆(R) (khi U (R) + U (R) = ∆(R))

Ngày đăng: 03/07/2023, 08:48

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN