1. Trang chủ
  2. » Giáo Dục - Đào Tạo

kỹ năng giải phương trình lượng giác

1 694 7

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 98,13 KB

Nội dung

KỸ NĂNG GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC I. Kỹ năng đưa phương trình về dạng tích 1. Sử dụng các phép biến đổi Lượng giác và Đại số: a) Công cụ - Lượng giác: Công thức cộng. CT Tổng  tích; hạ bậc; nhân - Đại số: Nhóm, thêm/bớt b) Bài tập áp dụng Bài 1. Sử dụng CT nhân đôi, hạ bậc a) [ĐH D2010] sin2x - cos2x + 3sinx - cosx - 1 = 0. b) [ĐH B2010](sin2x + cos2x)cosx + 2cos2x - sinx = 0 c) [ĐH B05] 1 sin cos x sin 2x cos 2x 0 + + + + = d) [ĐH D04] ( ) ( ) 2 cos x 1 2sin x cos x sin 2x sin x − + = − Bài 2. Sử dụng CT tổng  tích, hạ bậc a) [ĐH B07] 2 2sin 2x sin 7x 1 sin x + − = b) [ĐH D06] cos3x cos 2x cos x 1 0 + − − = c) [ĐH D02] Tìm [ ] x 0;14 ∈ cos3x 4cos2x 3cosx 4 0 − + − = d) [ĐH B02] 2 2 2 2 sin 3x cos 4x sin 5x cos 6x − = − Bài 3. Sử dụng CT tích  tổng, CT cộng với các góc ĐB a) [ĐH D09] 3 cos 5x 2 sin 3x cos 2x sin x 0 − − = b) [ĐH B09] ( ) 3 sinx cosxsin 2x 3cos3x 2 cos4x sin x + + = + c) [ĐH B08] 3 3 2 2 sin x 3cos x sin xcos x 3sin xcosx − = − d) [ĐH D07] 2 x x sin cos 3 cos x 2 2 2   + + =     e) [CĐ 08] sin 3x 3 cos3x 2sin 2x − = Bài 4. Giải các phương trình (BTVN) a) sin2x + cos2x - 5cosx - sinx + 3 = 0 b) (sin2x + cos2x)cosx + 2cos2x - sinx = 0 c) sin7x - 2cos 2 2x = sinx - 1 d) sinx + sin2x + sin3x + sin4x + sin5x + sin6x = 0 e) 2 4sin .sin .sin 4 3.cos .cos .cos 2 3 3 3 3 x x x x x x π π π π         + − − + + =                 2. Các công thức ĐB khác a) Các công thức ĐB +) 1 + sin2x = (cosx + sinx) 2 +) 1 - sin2x = (cosx - sinx) 2 +) cos2x = (cosx – sinx)(cosx + sinx) +) 1 + sin2x + cos2x = (cosx + sinx)2cosx +) 1 - sin2x + cos2x = (cosx - sinx)2cosx +) cos x s inx 1 t anx cos x ± ± = +) s inx cos x 1 cot x sin x ± ± = +) 2 sin(x ) sinx cos x 4 π ± = ± +) Các công th ứ c quy g ọ n góc b) Bài t ậ p Bài 1. Gi ả i các ph ươ ng trình a) 2 + sin2x + cos2x = 2sin 2 x b) 2 + cos2x – sin2x = 2cos 2 x c) [A07] (1 + sin 2 x)cosx + (1 + cos 2 x)sinx = 1 + sin2x d) [A03] 2 cos 2x 1 c otx 1 sin x sin 2x 1 t anx 2 − = + − + e) 2 cos 2x 1 tanx 1 sin x sin 2x 1 cot x 2 − = + − + Bài 2. Gi ả i các PT a) [ Đ H D05] 4 4 3 cos x sin x cos x sin 3x 0 4 4 2 π π     + + − − − =         b) (1 – tanx)(1 + sin2x) = 1 + tanx II. Kỹ năng loại nghiệm. 1. Loại nghiệm bằng đường tròn lượng giác 2. Loại nghiệm trong quá trình giải 3. Loại nghiệm bằng PP nghiệm nguyên 4. Áp dụng a) Thí d ụ minh h ọ a Thí d ụ 1. a) tan3x = tanx b) tanx.cot3x = 1 Thí d ụ 2. a) 2 cos 6x tanx cotx sin 2x = − b) 2 cos 4x c otx tanx sin 2x = − b) Bài t ậ p. 1) [ Đ H A06] ( ) 6 6 2 cos x sin x sin x cos x 0 2 2sin x + − = − ; 2) [ Đ H A03] 2 cos 2x 1 cot x 1 sin x sin 2x 1 tan x 2 − = + − + 3) [ Đ H B03] 2 cot x tan x 4sin 2x sin 2x − + = ; 4) [ Đ H A08] 1 1 7 4sin x 3 sin x 4 sin x 2 π   + = −   π     −     5) [ Đ H A09] (1 2 sin x)cos x 3 (1 2sin x)(1 sin x) − = + − ; 6) [ Đ H A2010] ( )   π + + +     = + 1 sinx cos2x sin x 4 1 cosx 1 tanx 2 7) Đ H B04] 2 5sin x 2 3(1 sin x) tan x − = − ; 8) [ Đ H D03] 2 2 x x sin tan 2x cos 0 2 4 2 π   − − =     9) [ Đ H B06] x cot x sin x 1 tan x tan 4 2   + + =     10) [ Đ H B06] x cot x sin x 1 tan x tan 4 2   + + =     11) 4 4 sin os 1 1 cot 2 5sin 2 2 8sin 2 x c x x x x + = − 11) [ Đ H A11] 2 1 sin 2 cos 2 2 sin sin 2 1 cot x x x x x + + = +

Ngày đăng: 25/05/2014, 16:36

TỪ KHÓA LIÊN QUAN

w