Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 152 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
152
Dung lượng
5,43 MB
Nội dung
LỜI CAM ĐOAN Tôi xin cam đoan luận án cơng trình nghiên cứu riêng tơi, hướng dẫn GS TS Đinh Quang Khiếu TS Phạm Lê Minh Thông Các số liệu kết nghiên cứu nêu luận án trung thực, đồng tác giả cho phép sử dụng chưa cơng bố cơng trình khác Tác giả luận án Đặng Thị Ngọc Hoa i LỜI CẢM ƠN Lời đầu tiên, xin bày tỏ lòng biết ơn chân thành sâu sắc đến GS.TS Đinh Quang Khiếu tận tâm hướng dẫn, truyền đạt kiến thức kinh nghiệm cho suốt q trình thực luận án Tơi xin cảm ơn TS Phạm Lê Minh Thông hướng dẫn để tơi hồn thành luận án Tơi xin trân trọng cảm ơn giúp đỡ, dạy nhiệt tình PGS.TS Nguyễn Hải Phong, Bộ mơn Hố phân tích, Trường Đại học Khoa học, Đại học Huế Tôi xin chân thành cảm ơn Q Thầy Cơ Bộ mơn Hóa lý, Q Thầy Cơ Khoa Hóa học, anh chị em Nghiên cứu sinh, Học viên Cao học em sinh viên Khoa Hóa học, Trường Đại học Khoa học, Đại học Huế giúp đỡ, tạo điều kiện thuận lợi cho thời gian học tập, nghiên cứu bảo vệ luận án Tôi xin chân thành cảm ơn Ban Giám hiệu, Ban chủ nhiệm Khoa Cơ đồng nghiệp Bộ mơn Hóa học – Lý sinh, Khoa Cơ bản, Trường Đại học Y Dược, Đại học Huế giúp đỡ tạo điều kiện tốt cho tơi suốt q trình học tập Cuối cùng, xin bày tỏ lời cảm ơn sâu sắc đến người thân gia đình, bạn bè ln quan tâm, khích lệ động viên suốt thời gian học tập nghiên cứu Tôi xin trân trọng cảm ơn! Thành phố Huế, ngày 25 tháng năm 2022 Tác giả luận án Đặng Thị Ngọc Hoa ii DANH MỤC CÁC CHỮ VIẾT TẮT, KÝ HIỆU Viết tắt Tiếng Anh Tiếng Việt AdSV Adsorptive anodic stripping Volt-Ampere hấp phụ hòa tan voltammetry anode AO Auramine O Vàng ô ASV Anodic stripping voltammetry Volt-Ampere hòa tan anode BET Brunauer-Emmett-Teller Brunauer-Emmett-Teller B-RBS Britton-Robinson Buffer Solution Dung dịch đệm Britton-Robinson CB Conduction band Vùng dẫn COD Chemical oxygen demand Nhu cầu oxygen hóa học CV Cyclic voltammetry Volt-Ampere vòng DCF Diclofenac Diclofenac DP-ASV Differential pulse anodic stripping Volt-Ampere hòa tan anode xung voltammetry vi phân Energy - dispersive X-ray Phổ tán xạ lượng tia X EDX spectroscopy Eg Energy of band gap Năng lượng vùng cấm EtOH Ethanol Ethanol FTIR Fourier transform infrared Phổ hồng ngoại biến đổi Fourier iii GCE Glassy carbon electrode Điện cực than thủy tinh HmIM 2-methyl imidazolate 2-methyl imidazolate HPLC High performance liquid Sắc ký lỏng hiệu cao chromatography IM Imidazolate Imidazolate M Metal Kim loại MB Methylene blue Methylene blue MeOH Methanol Methanol MG Malachite green Malachite green MOFs Metal-organic frameworks Khung hữu - kim loại MR Methyl red Methyl red MS Mass spectroscopy Phổ khối MyB Methyl blue Methyl blue NHE Normal hydrogen electrode Điện cực hydrogen chuẩn PZC Point of zero charge Điểm đẳng điện RE Relative error Độ lệch tương đối Rev Recovery Độ thu hồi RSD Relative standard deviation Độ lệch chuẩn tương đối SEM Scanning electron microscopy Hiển vi điện tử quét iv SV Stripping voltammetry Volt-Ampere hòa tan TEM Transmission electron microscopy Hiển vi điện tử truyền qua UV-Vis Ultraviolet - Visible absorption Phổ hấp thụ tử ngoại – khả kiến spectroscopy UV-Vis Ultraviolet - Visible diffuse Phổ phản xạ khuếch tán tử ngoại - DRS reflectance spectroscopy khả kiến VB Valance band Vùng hóa trị WE Working electrode Điện cực làm việc XPS X-ray photoelectron spectroscopy Phổ quang điện tử tia X XRD X-ray diffraction Nhiễu xạ tia X ZIFs Zeolitic imidazolate frameworks Khung zeolite imidazole v MỤC LỤC Trang LỜI CAM ĐOAN i LỜI CẢM ƠN ii DANH MỤC CÁC KÍ HIỆU, CÁC CHỮ VIẾT TẮT iii MỤC LỤC vi DANH MỤC CÁC BẢNG, SƠ ĐỒ ix DANH MỤC CÁC HÌNH xi MỞ ĐẦU Chương TỔNG QUAN TÀI LIỆU 1.1 T GQ VỀ VẬT LIỆU g-C3N4 1.1.1 Tính chất cấu trúc tinh thể 1.1.2 Phương pháp tổng hợp 11 1.1.3 ng dụng 14 1.2 VẬT LIỆU B T H g-C3N4 V ZIF-67 15 1.2.1 Vật liệu ZIF-67 15 1.2.2 Vật liệu g-C3N4 với -67, Fe2O3 ứng dụng phân tích điện hóa .19 1.3 VẬT LIỆU B T H g-C3N4 V TiO2 23 1.3.1 Vật liệu TiO2 hòa tan .23 1.3.2 Vật liệu g-C3N4 với TiO2 ứng dụng xúc tác quang hóa 26 1.4 GI I THIỆU VỀ O, DC VÀ MB 30 Chương NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 34 vi 2.1 Ộ D G GH Ê C 34 2.2 PHƯƠ G PHÁP GH Ê C 34 2.2.1 Các phương pháp nghiên cứu đặc trưng vật liệu 34 2.2.2 Phương pháp sắc ký lỏng hiệu cao (HPLC) 43 2.2.3 Sắc ký lỏng hiệu cao ghép nối khối phổ (HPLC-MS) 44 2.2.4 Phương pháp Volt-Ampere hòa tan (SV) 45 2.3 THỰC NGHIỆM 46 2.3.1 Hóa chất 46 2.3.2 Tổng hợp vật liệu 47 2.3.3 Biến tính điện cực GCE vật liệu ZIF-67/Fe2O3/g-C3N4 để xác định AO, vật liệu ZIF-6/g-C3N4 để xác định DCF 51 2.3.4 ghiên cứu hoạt tính quang xúc tác phân hủy MB TiO2/g-C3N4 54 Chương KẾT QUẢ VÀ THẢO LUẬN .59 3.1 GH Ê C T G H P VẬT LIỆU ZIF-67/g-C3N4 VÀ GD TRO G PHÂ T CH Đ Ệ HÓ XÁC ĐỊNH DCF TRO G Ư C T G 59 3.1.1 Tổng hợp vật liệu ZIF-67/g-C3N4 59 3.1.2 Phân tích điện hóa DC điện cực biến tính ( ) -67/g-C3N4 65 3.1.3 Phân tích mẫu thật 73 3.2 D GH Ê G Đ BI C T T G H P VẬT LIỆU ZIF-67/Fe2O3/g-C3N4 VÀ H Đ ỆN CỰC TRO G PHÂ T CH Đ Ệ HÓ G XÁC ĐỊNH AO TRO G THỰC PHẨM 75 3.2.1 Tổng hợp vật liệu ZIF-67/Fe2O3/g-C3N4 .75 3.2.2 Phân tích O điện cực biến tính -67/Fe2O3/g-C3N4 79 3.2.3 Phân tích mẫu thật 87 vii 3.3 GH Ê C LÝ MB DƯ T G H P VẬT LIỆU TiO2/g-C3N4 VÀ NG D NG XỬ Á H SÁ G KHẢ KI N 88 3.3.1 Tổng hợp phức peroxohydroxo titanium tan nước .88 3.3.2 Tổng hợp composite TiO2/g-C3N4 90 3.3.3 Hoạt tính xúc tác quang vật liệu TiO2/g-C3N4 96 KẾT LUẬN VÀ KIẾN NGHỊ 109 DANH MỤC CÁC CƠNG TRÌNH NGHIÊN CỨU 111 TÀI LIỆU THAM KHẢO 112 viii DANH MỤC CÁC BẢNG, SƠ ĐỒ Trang Bảng 2.1 Các loại hóa chất sử dụng thực nghiệm 46 Bảng 3.1 Các tính chất ết cấ c a -67/g-C3N4 60 Bảng 3.2 So sánh hoảng tuyến tính LOD c a điện cực iến tính hác ph n tích DCF 71 Bảng 3.3 Ảnh hưởng c a lần biến tính điện cực hác nha đến tín hiệ dòng đỉnh DCF 72 Bảng Ảnh hưởng c a chất cản trở đến việc ác đ nh D C - RBS 0,2 M pH = 6,5) 73 Bảng ết đ ất ả ph n tích DC m nư c ti ng phư ng pháp D - S LC 74 Bảng 3.6 Tín hiệ cường độ dịng đỉnh c a O hi có mặt chất cản trở 85 Bảng 3.7 Kết ph n tích O theo phư ng pháp D - S phư ng pháp LC 87 Bảng 3.8 Các tính chất ết cấ c a TiO2/g-C3N4 91 Bảng 3.9 H ng số tốc độ bi u kiến c a vật liệ nghiên vật liệ công bố nồng độ hác nha c a MB 98 Sơ 3.1 C chế o y hóa c a DC C-GCE 69 Sơ 3.2 Sự h nh thành -67/g-C3N4 tư ng tác c a DC C-GCE 69 Sơ 3.3 C chế phản ứng o y hóa c a O điện cực 84 Sơ 3.4 Con đường ph n h y ang úc tác ix 103 Sơ 3.5 Minh họa c chế ph n h y MB b ng úc tác TiO2/g-C3N4 dư i ánh sáng khả kiến 105 x determination of eight illegal dyes in chili products by liquid chromatography–tandem mass spectrometry J Chromatogr B 942:46–52 [104] Li K, Gao S, Wang Q, Xu H, Wang Z, et al (2015), In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under led light irradiation ACS Appl Mater Interfaces 7(17):9023–30 [105] Li X, Liu C, Wu D, Li J, Huo P, Wang H (2019), Improved charge transfer by size-dependent plasmonic au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction Chinese J Catal 40(6):928–39 [106] Li Y, Li L, Li C, Chen W, Zeng M (2012), Carbon nanotube/titania composites prepared by a micro-emulsion method exhibiting improved photocatalytic activity Appl Catal A Gen 427:1–7 [107] Li Y, Zhou K, He M, Yao J (2016), Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption Microporous Mesoporous Mater 234:287–92 [108] Liao Y, Que W, Jia Q, He Y, Zhang J, Zhong P (2012), Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and singlecrystalline rutile nanorods array J Mater Chem 22(16):7937 [109] Lin K-YA, Chang H-A (2015), Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water Chemosphere 139(1):624–31 [110] Lin K-YA, Lee W-D (2016), Self-assembled magnetic graphene supported ZIF-67 as a recoverable and efficient adsorbent for benzotriazole Chem Eng J 284:1017–27 [111] Lin Z, Yu B, Huang J (2020), Cellulose-derived hierarchical g-C3N4/TiO2nanotube heterostructured composites with enhanced visible-light photocatalytic performance Langmuir 36(21):5967–78 [112] Linnemann J, Taudien L, Klose M, Giebeler L (2017), Electrodeposited films to MOF-derived electrochemical energy storage electrodes: a concept of 123 simplified additive-free electrode processing for self-standing, ready-to-use materials J Mater Chem A 5(35):18420–28 [113] Liu DY, Dong JH, Liu FM, Gao XF, Yu Y, et al (2019), Synthesis and photocatalytic performance of g-C3N4 composites J Ovonic Res 15(4):239– 46 [114] Liu Y, Sun K, Jiang J, Zhou W, Shang Y, et al (2021), Metallurgical pyrolysis toward Co@ nitrogen-doped carbon composite for lithium storage Green Energy Environ 6(1):91–101 [115] Liu Y, Yuan X, Wang H, Chen X, Gu S, et al (2015), Novel visible lightinduced g-C3N4–Sb2S3/Sb4O5Cl2 composite photocatalysts for efficient degradation of methyl orange Catal Commun 70:17–20 [116] Long B, Lin J, Wang X (2014), Thermally-induced desulfurization and conversion of guanidine thiocyanate into graphitic carbon nitride catalysts for hydrogen photosynthesis J Mater Chem A 2(9):2942–51 [117] Lotsch B V, Schnick W (2006), From triazines to heptazines: novel nonmetal tricyanomelaminates as precursors for graphitic carbon nitride materials Chem Mater 18(7):1891–1900 [118] Low Z-X, Yao J, Liu Q, He M, Wang Z, et al (2014), Crystal transformation in zeolitic-imidazolate framework Cryst Growth Des 14(12):6589–98 [119] Lu L, Wang G, Zou M, Wang J, Li J (2018), Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst Appl Surf Sci 441:1012–23 [120] Lu N, Wang C, Sun B, Gao Z, Su Y (2017), Fabrication of TiO2-doped single layer graphitic-C3N4 and its visible-light photocatalytic activity Sep Purif Technol 186:226–32 [121] Luo Z, Yao J (2017), Raman investigations of atomic/molecular clusters and aggregates In Raman Spectroscopy and Applications InTech [122] Madsen KG, Skonberg C, Jurva U, Cornett C, Hansen SH, et al (2008), 124 Bioactivation of diclofenac in vitro and in vivo: correlation to electrochemical studies Chem Res Toxicol 21(5):1107–19 [123] Mamakhel , Tyrsted C, Bøjesen ED, Hald P, Iversen BB (2013), Direct formation of crystalline phase pure rutile TiO2 nanostructures by a facile hydrothermal method Cryst Growth Des 13(11):4730–34 [124] Manea F, Ihos M, Remes A, Burtica G, Schoonman J (2010), Electrochemical determination of diclofenac sodium in aqueous solution on Cu‐doped zeolite‐expanded graphite‐epoxy electrode Electroanalysis 22(17‐ 18):2058–63 [125] Matthews JA (2014), 5220 chemical oxygen demand (COD)* In Encyclopedia of Environmental Change, 20th edition 1998 Preparado por: American Public Health Association American Water Works Association Water Environment Federation, pp 14–19 [126] McCusker LB (1994), Advances in powder diffraction methods for zeolite structure analysis Stud Surf Sci Catal 84(C):341–56 [127] Meng Z, Xie Y, Cai T, Sun Z, Jiang K, Han W-Q (2016), Graphene-like gC3N4 nanosheets/sulfur as cathode for lithium–sulfur battery Electrochim Acta 210:829–36 [128] Mirsalari SA, Nezamzadeh-Ejhieh A (2020), The catalytic activity of the coupled CdS-AgBr nanoparticles: a brief study on characterization and its photo-decolorization activity towards methylene blue Desalin Water Treat 175:263–72 [129] Mo Z, She X, Li Y, Liu L, Huang L, et al (2015), Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution RSC Adv 5(123):101552– 62 [130] Moulder JF (1995), Handbook of X-ray photoelectron spectroscopy Phys Electron., pp 230–32 [131] Mousavi B, Chaemchuen S, Moosavi B, Luo Z, Gholampour N, Verpoort F 125 (2016), Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO2 to cyclic carbonates New J Chem 40(6):5170–76 [132] Nasiri F, Rounaghi GH, Ashraf N, Deiminiat B (2021), A new electrochemical sensing platform for quantitative determination of diclofenac based on gold nanoparticles decorated multiwalled carbon nanotubes/graphene oxide nanocomposite film Int J Environ Anal Chem 101(2):153–66 [133] Ngo HT, Hoa LT, Khanh NT, Hoa TTB, Toan TTT, et al (2020), ZIF-67/gC3N4-modified electrode for simultaneous voltammetric determination of uric acid and acetaminophen discriminating with agent cetyltrimethylammonium J Nanomater bromide as Vol.2020 https://doi.org/10.1155/2020/7915878 [134].Nguyen LTL, Le KKA, Truong HX, Phan NTS (2012), Metal–organic frameworks for catalysis: the knoevenagel reaction using zeolite imidazolate framework ZIF-9 as an efficient heterogeneous catalyst Catal Sci Technol 2(3):521–28 [135] Nguyen Thi Kim T, Bui TT, Pham AT, Duong VT, Le THG (2019), Fast determination of auramine o in food by adsorptive stripping voltammetry J Anal Methods Chem Vol.2019 https://doi.org/10.1155/2019/8639528 [136] Niemantsverdriet JW (2007), Spectroscopy in catalysis: an introduction Wiley-VCH Verlag GmbH & Co.KGaA;Weinheim 41–182 [137] Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016), Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329 [138] Parodi S, Santi L, Russo P, Albini A, Vecchio D, et al (1982), DNA damage induced by Auramine O in liver, kidney, and bone marrow of rats and mice, and in a human cell line (alkaline elution assay and sce induction) J Toxicol 126 Environ Heal Part A Curr Issues 9(5–6):941–52 [139] Pauling L, Sturdivant JH (1937), The structure of cyameluric acid, hydromelonic acid and related substances Proc Natl Acad Sci U S A 23(12):615 [140] Phan Anh, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM (2009), Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks Acc Chem Res 43(1): 58–67 [141] Pinheiro MF, Rodrigues GS, Junior JA de QL, de Sousa R de CS, da Costa R (2 ), nálise da capacidade de adsortiva carvão da palha café arábica utilizando o corante azul de metileno Brazilian J Dev 6(1):2861–68 [142] Pori P, Vilčnik , Petrič M, Škapin S, Mihelčič M, et al (2016), Structural studies of TiO2/wood coatings prepared by hydrothermal deposition of rutile particles from TiCl4 aqueous solutions on spruce (picea abies) wood Appl Surf Sci 372:125–38 [143] Qian J, Sun F, Qin L (2012), Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals Mater Lett 82:220–23 [144] Qin J, Wang S, Wang X (2017), Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient cocatalyst Appl Catal B Environ 209:476–82 [145] Rambabu A, Kishore B, Munichandraiah N, Krupanidhi SB, Barpanda P (2017), Na2Ti6O13 thin films as anode for thin film sodium ion batteries AIP Conf Proc 1832:1–4 [146] Redemann CE, Lucas HJ (1940), Some derivatives of cyameluric acid and probable structures of melam, melem and melon J Am Chem Soc 62(4):842–46 [147] Roosendaal SJ, Van Asselen B, Elsenaar JW, Vredenberg AM, Habraken F (1999), The oxidation state of Fe (100) after initial oxidation in O2 Surf Sci 442(3):329–37 127 [148] Roy JS, Dugas G, Morency S, Ribeiro SJL, Messaddeq Y (2020), Enhanced photocatalytic activity of silver vanadate nanobelts in concentrated sunlight delivered through optical fiber bundle coupled with solar concentrator SN Appl Sci 2(2):1–11 [149] Sasal A, Tyszczuk-Rotko K, Wójciak M, Sowa (2 20), First electrochemical sensor (screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes) for ultratrace determination of diclofenac Materials (Basel) 13(3):781 [150] Scherb C (2009), Controlling the Surface Growth of Metal-Organic Frameworks Dissertation, Faculty of Chemistry and Pharmacy, LudwigMaximilians University, Munich 32–44 [151] Schwarzenbach G, Muehlebach J, Mueller K (1970), Peroxo complexes of titanium Inorg Chem 9(11):2381–90 [152] Sehnert J, Baerwinkel K, Senker J (2007), Ab initio calculation of solid-state nmr spectra for different triazine and heptazine based structure proposals of g-C3N4 J Phys Chem B 111(36):10671–80 [153] Semencha A V, Blinov LN (2010), Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review Glas Phys Chem 36(2):199–208 [154] Shakya S, Shrestha NJ, Subedi KU (2020), Methemoglobinemia in a newborn Med J Shree Birendra Hosp 19(1):45–47 [155] Shao J, Wan Z, Liu H, Zheng H, Gao T, et al (2014), Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for li storage J Mater Chem A 2(31):12194–200 [156] She X, Wu J, Xu H, Zhong J, Wang Y, et al (2017), High efficiency photocatalytic water splitting using 2D α‐Fe2O3/g‐C3N4 Z-scheme catalysts Adv Energy Mater 7(17):1-25 [157] Shearier E, Cheng P, Zhu Z, Bao J, Hu YH, Zhao F (2016), Surface defection reduces cytotoxicity of Zn (2-methylimidazole) (ZIF-8) without 128 compromising its drug delivery capacity RSC Adv 6(5):4128–35 [158] Shekhah O, Liu , ischer R , Wöll C (2 11), MOF thin films: existing and future applications Chem Soc Rev 40(2):1081–1106 [159] Shen R, Liu W, Ren D, Xie J, Li X (2019), Co1 4NiO 6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet schottky heterojunctions for active and durable photocatalytic H2 production Appl Surf Sci 466:393– 400 [160] Shi H, Du J, Hou J, Ni W, Song C, et al (2020), Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure: insights into the role of Co2+ and cocatalyst J CO2 Util 38(January):16–23 [161] Shi L, Wang T, Zhang H, Chang K, Ye J (2015), Electrostatic self‐assembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO2 reduction Adv Funct Mater 25(33):5360–67 [162] Shi X, Fujitsuka M, Lou Z, Zhang P, Majima T (2017), In situ nitrogendoped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light J Mater Chem A 5(20):9671–81 [163] Soleymani J, Hasanzadeh M, Shadjou N, Jafari MK, Gharamaleki JV, et al (2016), A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode Mater Sci Eng C 61:638–50 [164] Stuart B (2004), Infrared spectroscopy: Fundamentals and applications John Wiley & Sons, Ltd 18-24 [165] Sun P, He X, Wang W, Ma J, Sun Y, Lu G (2012), Template-free synthesis of monodisperse α-Fe2O3 porous ellipsoids and their application to gas sensors CrystEngComm 14(6):2229–34 [166] Sun Z, Li C, Yao G, Zheng S (2016), In situ generated g-C3N4/TiO2 hybrid 129 over diatomite supports for enhanced photodegradation of dye pollutants Mater Des 94:403–9 [167] Tahir M, Cao C, Mahmood N, Butt FK, Mahmood A, et al (2014), Multifunctional g-C3N4 nanofibers: a template-free fabrication and enhanced optical, electrochemical, and photocatalyst properties ACS Appl Mater Interfaces 6(2):1258–65 [168] Takai O, Lee KH, Ohta R, Saito N (2002), Carbon nitrides Seimitsu Kogaku Kaishi/Journal Japan Soc Precis Eng 68(12):1526–29 [169] Tatebe C, Zhong X, Ohtsuki T, Kubota H, Sato K, Akiyama H (2014), A simple and rapid chromatographic method to determine unauthorized basic colorants (Rhodamine B, Auramine O, and Pararosaniline) in processed foods Food Sci Nutr 2(5):547–56 [170] Teter DM, Hemley RJ (1996), Low-compressibility carbon nitrides Science (80- ) 271(5245):53–55 [171] Thanh HTM, Tu NTT, Hung NP, Tuyen TN, Mau TX, Khieu DQ (2019), Magnetic iron oxide modified MIL-101 composite as an efficient visiblelight-driven photocatalyst for methylene blue degradation J Porous Mater 26(6):1699–1712 [172] Thomas , ischer , Goettmann , ntonietti M, Müller -O, et al (2008), Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts J Mater Chem 18(41):4893–4908 [173] Tian W, Shen Q, Li N, Zhou J (2016), Efficient degradation of methylene blue over boron-doped g-C3N4/Zn0.8Cd0.2S photocatalysts under simulated solar irradiation RSC Adv 6(30):25568–76 [174] Tian Y, Zhao Y, Chen Z, Zhang G, Weng L, Zhao D (2007), Design and generation of extended zeolitic metal–organic frameworks (ZMOFs): synthesis and crystal structures of zinc (II) imidazolate polymers with zeolitic topologies Chem Eur J 13(15):4146–54 [175] Tonda S, Kumar S, Kandula S, Shanker V (2014), Fe-doped and-mediated 130 graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight J Mater Chem A 2(19):6772–80 [176] Tong Z, Yang D, Shi J, Nan Y, Sun Y, Jiang Z (2015), Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance ACS Appl Mater Interfaces 7(46):25693–701 [177] Tong Z, Yang D, Zhao X, Shi J, Ding F, et al (2018), Bio-inspired synthesis of three-dimensional porous g-C3N4@ carbon microflowers with enhanced oxygen evolution reactivity Chem Eng J 337:312–21 [178] Tran UPN, Le KKA, Phan NTS (2011), Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction Acs Catal 1(2):120–27 [179] Tu NTT, Sy PC, Minh TT, Thanh HTM, Thien TV, et al (2019), Synthesis of (Zn/Co)-based zeolite imidazole frameworks and their applications in visible light-driven photocatalytic degradation of congo red J Incl Phenom Macrocycl Chem 95(1–2):99–110 [180] Tung J, Huang W, Yang J, Chen G, Fan C, et al (2017), Auramine O, an incense smoke ingredient, promotes lung cancer malignancy Environ Toxicol 32(11):2379–91 [181] Tuyen LTT, Quang DA, Tam Toan TT, Tung TQ, Hoa TT, et al (2018), Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue J Environ Chem Eng 6(5):5999–6011 [182] Usov PM, McDonnell-Worth C, Zhou F, MacFarlane DR, D’ lessandro DM (2015), The electrochemical transformation of the zeolitic imidazolate framework ZIF-67 in aqueous electrolytes Electrochim Acta 153:433–38 [183] Wang C-C, Ying JY (1999), Sol− gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals Chem Mater 11(11):3113–20 [184] Wang C, Yang F, Sheng L, Yu J, Yao K, et al (2016), Zinc-substituted ZIF67 nanocrystals and polycrystalline membranes for propylene/propane 131 separation Chem Commun 52(85):12578–81 [185] Wang J (2006), Analytical electrochemistry, 3rd edition, Wiley Vol 38 553890 [186] Wang L, Zhu H, Shi Y, Ge Y, Feng X, et al (2018), Novel catalytic micromotor of porous zeolitic imidazolate framework-67 for precise drug delivery Nanoscale 10(24):11384–91 [187] Wang R, Yan T, Han L, Chen G, Li H, et al (2018), Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction J Mater Chem A 6(14):5752–61 [188] Wang W, Fang J, Shao S, Lai M, Lu C (2017), Compact and uniform TiO2@ g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics Appl Catal B Environ 217:57–64 [189] Wang X, Blechert S, Antonietti M (2012), Polymeric graphitic carbon nitride for heterogeneous photocatalysis ACS Catal 2(8):1596–1606 [190] Wang X, Li Y, Wang C, Gan T, Yan J, Wang J (2016), Ultrathin Na2Ti9O19 heterostructural nanosheets modified with TiO2 nanoparticles for enhanced photocatalysis Mater Lett 178:140–43 [191] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, et al (2009), A metalfree polymeric photocatalyst for hydrogen production from water under visible light Nat Mater 8(1):76–80 [192] Wang Y, Zhang J, Wang X, Antonietti M, Li H (2010), Boron‐and fluorine‐ containing mesoporous carbon nitride polymers: metal‐free catalysts for cyclohexane oxidation Angew Chemie Int Ed 49(19):3356–59 [193] Wang ZJ, Garth K, Ghasimi S, Landfester K, Zhang KAI (2015), Conjugated microporous poly (benzochalcogenadiazole) s for photocatalytic oxidative coupling of amines under visible light ChemSusChem 8(20):3459–64 [194] Wei F, Jiang J, Yu G, Sui Y (2015), A novel cobalt–carbon composite for the 132 electrochemical supercapacitor electrode material Mater Lett 146:20–22 [195] Wei K, Li K, Yan L, Luo S, Guo H, et al (2018), One-step fabrication of gC3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems Appl Catal B Environ 222:88–98 [196] Wei W, Chen W, Ivey DG (2008), Rock salt-spinel structural transformation in anodically electrodeposited Mn-Co-O nanocrystals Chem Mater 20(5):1941–47 [197] Wuttke S, Zimpel A, Bein T, Braig S, Stoiber K, et al (2017), Validating metal‐organic framework nanoparticles for their nanosafety in diverse biomedical applications Adv Healthc Mater 6(2):1600818 [198] Xiang Q, Yu J, Jaroniec M (2011), Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites J Phys Chem C 115(15):7355–63 [199] Xu L, Xia J, Xu H, Yin S, Wang K, et al (2014), Reactable ionic liquid assisted solvothermal synthesis of graphite-like C3N4 hybridized α-Fe2O3 hollow microspheres with enhanced supercapacitive performance J Power Sources 245:866–74 [200] Xu Q, Zhu B, Jiang C, Cheng B, Yu J (2018), Constructing 2D/2D Fe2O3/gC3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance Sol RRL 2(3):1–10 [201].Xu Y, Schoonen MAA (2000), The absolute energy positions of conduction and valence bands of selected semiconducting minerals Am Mineral 85(3– 4):543–56 [202] Yamashita T, Hayes P (2008), Analysis of XPS spectra of Fe2+ and Fe3+ions in oxide materials Appl Surf Sci 254(8):2441–49 [203] Yan H, Yang H (2011), TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation J Alloys Compd 509(4):26–29 133 [204] Yan J, Huang X, Liu S, Yang J, Yuan Y, et al (2016), A simple and sensitive method for Auramine O detection based on the binding interaction with bovin serum albumin Anal Sci 32(8):819–24 [205] Yan SC, Li ZS, Zou ZG (2009), Photodegradation performance of g-C3N4 fabricated by directly heating melamine Langmuir 25(17):10397–401 [206] Yan T, Chen H, Wang X, Jiang F (2013), Adsorption of perfluorooctane sulfonate (PFOS) on mesoporous carbon nitride RSC Adv 3(44):22480–89 [207] Yan Z, Liu L, Shu H, Yang X, Wang H, et al (2015), A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries J Power Sources 274:8–14 [208] Yang K, Yu QB, Li HQ, Ren XX, Pan J, et al (2021), Preparation of αFe2O3/g-C3N4 with Co-Fe bonds as a electrochemical sensor for glucose detection J.Nano Research 67:43-54 [209] Yang L, Yu L, Sun M, Gao C (2014), Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate Catal Commun 54:86–90 [210] Yoshimura M, Byrappa K (2008), Hydrothermal processing of materials: past, present and future J Mater Sci 43(7):2085–210 [211] Yu H, Lv R, Wu H, Qian C, Wang S, Chen M (2020), Fabrication of ternary hierarchical nanosheets rGO/PANI/Fe2O3 as electrode material with high capacitance performance J Electrochem Soc 167(4):40501 [212] Yu J, Wang S, Low J, Xiao W (2013), Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air Phys Chem Chem Phys 15(39):16883–90 [213] Yuan, B., Long, Y., Wu, L., Liang, K., Wen, H., Luo, S., Huo, H., Yang, H and Ma J (2016), TiO2@ h-CeO2: a composite yolk-shell microsphere with enhanced photodegradation activity Catal Sci Technol 6:6396–6405 [214] Zeng B, Zhang L, Wan X, Song H, Lv Y (2015), Fabrication of α-Fe2O3/g- 134 C3N4 composites for cataluminescence sensing of H2S Sensors Actuators, B Chem 211:370–76 [215] Zhang B, He X, Ma X, Chen Q, Liu G, et al (2020), In situ synthesis of ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst with enhanced photocatalytic activity Sep Purif Technol 247:1-33 [216] Zhang C, Huang K (2017), MOF-derived iron as an active energy storage material for intermediate-temperature solid oxide iron–air redox batteries Chem Commun 53(76):10564–67 [217] Zhang F, Yang H, Xie X, Li L, Zhang L, et al (2009), Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes Sensors Actuators, B Chem 141(2):381–89 [218] Zhang H, Li Z, Chen T, Qin B (2017), Quantitative determination of Auramine O by terahertz spectroscopy with 2DCOS-PLSR model Spectrochim Acta Part A Mol Biomol Spectrosc 184:335–41 [219] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, et al (2010), Synthesis of a carbon nitride structure for visible‐light catalysis by copolymerization Angew Chemie Int Ed 49(2):441–44 [220] Zhang J, Yu W, Liu J, Liu B (2015), Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass Appl Surf Sci 358:457–62 [221] Zhang J, Zhang M, Zhang G, Wang X (2012), Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis Acs Catal 2(6):940–48 [222] ZHANG J, Song YAN, Lu FU, Fei W, Mengqiong Y, et al (2011), Photocatalytic degradation of Rhodamine B on anatase, rutile, and brookite TiO2 Chinese J Catal 32(6–8):983–91 [223] Zhang W, Qin H, Liu Z, Du H, Li H, et al (2020), Quantitative determination of Auramine O in bean curd sheets by dispersive solid phase extraction with dynamic surfaced-enhanced raman spectroscopy Anal Lett 53(8):1282–93 135 [224] Zhang W, Tan Y, Gao Y, Wu J, Hu J, et al (2016), Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications J Appl Electrochem 46(4):441–50 [225] Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y (2013), Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging J Am Chem Soc 135(1):18–21 [226] Zhang Y-Z, Wang Y, Xie Y-L, Cheng T, Lai W-Y, et al (2014), Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors Nanoscale 6(23):14354–59 [227] Zhang Y, Hou H, Yang X, Chen J, Jing M, et al (2016), Sodium titanate cuboid as advanced anode material for sodium ion batteries J Power Sources 305:200–208 [228] Zhang Y, Liu J, Wu G, Chen W (2012), Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production Nanoscale 4(17):5300–5303 [229] Zhao C, Li Q, Xie Y, Zhang L, Xiao X, et al (2020), Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production J Mater Chem A 8(1):305–12 [230] Zhao S, Chen S, Yu H, Quan X (2012), g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation Sep Purif Technol 99:50–54 [231] Zhao X, Johnston C, Grant PS (2009), A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode J Mater Chem 19(46):8755–60 [232] Zhou J, Zhang M, Zhu Y (2015), Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method Phys Chem Chem Phys 17(5):3647–52 136 [233] Zhou L, Wang L, Zhang J, Lei J, Liu Y (2017), The preparation, and applications of gC3N4/TiO2 heterojunction catalysts—a review Res Chem Intermed 43(4):2081–2101 [234] Zhou L, Xu Y, Yu W, Guo X, Yu S, et al (2016), Ultrathin two-dimensional graphitic carbon nitride as a solution-processed cathode interfacial layer for inverted polymer solar cells J Mater Chem A 4(21):8000–8004 [235] Zhu B, Xia P, Ho W, Yu J (2015), Isoelectric point and adsorption activity of porous g-C3N4 Appl Surf Sci 344:188–95 [236] Zhu J-H, Li M-M, Liu S-P, Liu Z-F, Li Y-F, Hu X-L (2015), Fluorescent carbon dots for Auramine O determination and logic gate operation Sensors Actuators B Chem 219:261–67 [237] Zhu J, Xiao P, Li H, Carabineiro SAC (2014), Graphitic carbon nitride: synthesis, properties, and applications in catalysis ACS Appl Mater Interfaces 6(19):16449–65 137