Xúc tác cho phản ứng reforming methane ảnh hưởng của hàm lượng chất xúc tiến và các thông số nhiệt động đến quá trình phản ứng báo cáo tổng kết đề tài nghiên cứu khoa học cấp trường

126 1 0
Xúc tác cho phản ứng reforming methane ảnh hưởng của hàm lượng chất xúc tiến và các thông số nhiệt động đến quá trình phản ứng báo cáo tổng kết đề tài nghiên cứu khoa học cấp trường

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ CÔNG THƢƠNG ĐẠI HỌC CÔNG NGHIỆP THÀNH PHỐ HỒ CHÍ MINH BÁO CÁO TỔNG KẾT ĐỀ TÀI KHOA HỌC KẾT QUẢ THỰC HIỆN ĐỀ TÀI NGHIÊN CỨU KHOA HỌC CẤP TRƢỜNG Tên đề tài: Xúc tác cho phản ứng reforming methane: Ảnh hƣởng hàm lƣợng chất xúc tiến thơng số nhiệt động đến q trình phản ứng Mã số đề tài: 21/1H04 Chủ nhiệm đề tài: ThS Trần Ngọc Thắng Đơn vị thực hiện: Khoa Công nghệ Hóa học TP Hồ Chí Minh, ngày 15 tháng 04 năm 2022 LỜI CÁM ƠN Trong điều kiện dịch bệnh khó khăn, nhóm tác giả gặp khơng khó khăn việc thực đề tài nghiên cứu Tuy nhiên, với hỗ trợ ban lãnh đạo Khoa Cơng nghệ Hóa học, Phịng quản lý Khoa học Hợp tác quốc tế, đạt đƣợc kết mong đợi Thay mặt cho nhóm nghiên cứu, tơi xin chân thành cảm ơn hỗ trợ tài từ trƣờng Đại học Cơng nghiệp Thành phố Hồ Chí Minh, quan tâm, tạo điều kiện thuận lợi việc sử dụng máy móc, thiết bị thí nghiệm Khoa Cơng nghệ Hóa học Ngồi ra, đóng góp tƣ vấn chun mơn từ nhóm nghiên cứu ngồi nƣớc góp phần cho thành cơng đề tài Nhóm nghiên cứu xin gởi lời cảm ơn giáo sƣ Sumaiya bt Zainal Abidin @ Murad, trƣờng Đại học Malaysia Pahang tích cực tham gia góp ý cho việc cơng bố kết nghiên cứu tạp chí chun ngành uy tín Tuy có nhiều cố gắng, nhƣng đề tài nghiên cứu khoa học không tránh khỏi thiếu sót Nhóm nghiên cứu kính mong hội đồng khoa học, chuyên gia, ngƣời quan tâm đến đề tài, đồng nghiệp, gia đình bạn bè tiếp tục có ý kiến đóng góp, giúp đỡ để đề tài đƣợc hồn thiện Hồ Chí Minh, tháng 04 năm 2022 Nhóm tác giả Mục lục PHẦN I THÔNG TIN CHUNG I Thông tin tổng quát II Kết nghiên cứu III Sản phẩm đề tài, công bố kết đào tạo 12 IV Tình hình sử dụng kinh phí 12 V Kiến nghị 12 VI Phụ lục sản phẩm 13 PHẦN II BÁO CÁO CHI TIẾT ĐỀ TÀI NGHIÊN CỨU KHOA HỌC 14 CHƢƠNG 1: TỔNG QUAN 14 1.1 Tổng quan vấn đề nghiên cứu 14 1.2 Sự phát triển chất xúc tác 17 1.3 Các phƣơng pháp tổng hợp vật liệu xúc tác 26 1.4 Cơ chế phản ứng CRM 31 CHƢƠNG NGUYÊN LIỆU VÀ CÁC PHƢƠNG PHÁP NGHIÊN CỨU 37 2.1 Tổng hợp xúc tác 37 2.2 Phân tích xúc tác 37 2.3 Đánh giá hoạt tính xúc tác 38 CHƢƠNG KẾT QUẢ VÀ THẢO LUẬN 40 3.1 Đánh giá thuộc tính chất xúc tác 40 3.2 Hoạt tính xúc tác cho CRM 46 3.3 Đánh giá hình thành cặn carbon 49 3.4 Nghiên cứu chế CRM 5%La-10%Co/Al2O3 52 3.5 Độ bền xúc tác 59 CHƢƠNG KẾT LUẬN VÀ KIẾN NGHỊ 60 4.1 Kết luận 60 4.2 Kiến nghị 61 TÀI LIỆU THAM KHẢO 62 PHẦN III PHỤ LỤC ĐÍNH KÈM 70 Danh mục bảng Bảng Quy mô thị trƣờng giới Syngas 15 Bảng Danh sách phản ứng tham gia trình CRM 33 Bảng Danh sách biểu thức tốc độ LH đƣợc đề xuất cho phản ứng CRM 35 Bảng Các thuộc tính vật lý chất mang xúc tác 40 Bảng Ƣớc tính tham số động học từ mơ hình Power Law 53 Bảng Các thông số động học đƣợc tính tốn từ mơ hình LH đƣợc đề xuất 56 Bảng Các ƣớc tính mơ hình LH mơ hình cho tiêu chí BMV 58 Danh mục hình ảnh Hình Các ứng dụng syngas theo tỉ lệ mol H2/CO 14 Hình Hình ảnh TEM (a) Co12/SBA-15 sử dụng (a’) Rh0.5Co12/SBA-15 19 Hình TPO tóm tắt diện tích peak tích hợp chất xúc tác qua sử dụng (1) Ni/Al2O3, (2) Ni-Mg/Al2O3, (3) Ni-Ca/Al2O3, (4) Ni-Ba/Al2O3 23 Hình Biến thiên trọng lƣợng chất xúc tác trình khử 25 Hình Sơ đồ quy trình sản xuất Al2O3 xốp 28 Hình Cấu hình TEM nhiễu xạ điện tử (a) Al2O3-AlCl3, (b) Al2O3-Al(NO3)3 29 Hình Biểu diễn sơ đồ trình ngâm tẩm ƣớt ngâm tẩm khơ 30 Hình Biểu diễn sơ đồ trình liên quan trình ngâm tẩm tiền chất giá đỡ xốp 31 Hình Các bƣớc phản ứng cho phản ứng CRM (a) phân ly hấp phụ CH4, (b) phân ly hấp phụ CO2, (c) di chuyển, (d) trung gian oxy hóa khử 32 Hình 10 Cơ chế Langmuir-Hinshelwood 34 Hình 11 Đƣờng đẳng nhiệt hấp phụ/giải hấp N2 Al2O3, 10%Co/Al2O3 10%Co/Al2O3 xúc tiến La với hàm lƣợng khác 41 Hình 12 Cấu hình XRD (a) Al2O3, (b) 10%Co/Al2O3, (c) 2%La-10%Co/Al2O3, (d) 3%La-10%Co/Al2O3, (e) 4%La-10%Co/Al2O3, (f) 5%La-10%Co/Al2O3, (g) 8%La-10% Co/Al2O3 42 Hình 13 Kết H2-TPR cho (a) 10%Co/Al2O3, (b) 3%La-10%Co/Al2O3, (c) 4%La-10% Co/Al2O3, (d) 5%La -10%Co/Al2O3, (e) 8%La-10%Co/Al2O3 44 Hình 14 Kết CO2-TPD Al2O3, 10%Co/Al2O3, 3%La-10%Co/Al2O3, 5%La10%Co/Al2O3, 8%La-10%Co/Al2O3 45 Hình 15 Độ chuyển hóa theo thời gian CH4 xúc tác 10%Co/Al2O3 đƣợc xúc tiến với hàm lƣợng La khác 47 Hình 16 Độ chuyển hóa TOS CO2 chất xúc tác 10%Co/Al2O3 đƣợc xúc tiến La với hàm lƣợng khác 48 Hình 17 Ảnh hƣởng hàm lƣợng La đến hiệu suất sản phẩm tỷ lệ H2/CO CRM hệ xúc tác 49 Hình 18 Phổ Raman chất xúc tác qua sử dụng với hàm lƣợng chất xúc tiến khác sau CRM 1023 K 50 Hình 19 Phổ TPO đƣợc chọn lọc gồm 10%Co/Al2O3, 3%La-10%Co/Al2O3, 5%La10%Co/Al2O3, 8%La-10%Co/Al2O3 51 Hình 20 Mối tƣơng quan hiệu suất chất xúc tác tốc độ hình thành cacbon 52 Hình 21 Biểu đồ chẵn lẻ cho tốc độ phản ứng theo mơ hình Power Law 54 Hình 22 Ƣớc tính lƣợng hoạt hóa từ Mơ hình 57 Hình 23 Biểu đồ chẵn lẻ cho tốc độ phản ứng CH4 mơ hình động học LangmuirHinshelwood 59 Hình 24 TOS độ chuyển đổi chất phản ứng đạt đƣợc từ thử nghiệm độ bền 5%La10%Co/Al2O3 1023 K tỷ lệ nhập liệu 60 PHẦN I THÔNG TIN CHUNG I Thông tin tổng quát 1.1 Tên đề tài: Xúc tác cho phản ứng reforming methane: Ảnh hƣởng hàm lƣợng chất xúc tiến thông số nhiệt động đến trình phản ứng 1.2 Mã số: 21/1H04 1.3 Danh sách chủ trì, thành viên tham gia thực đề tài TT Họ tên (học hàm, học vị) Đơn vị cơng tác Vai trị thực đề tài 01 Trần Ngọc Thắng, Thạc sĩ Khoa Cơng nghệ Hóa học, Đại học Công nghiệp TP HCM Chủ nhiệm đề tài Phạm Hồng Ái Lệ, Thạc sĩ Khoa Cơng nghệ Hóa học, Đại học Cơng nghiệp TP HCM Thành viên 02 1.4 Đơn vị chủ trì: 1.5 Thời gian thực hiện: 1.5.1 Theo hợp đồng: từ tháng 03 năm 2021 đến tháng 03 năm 2022 1.5.2 Gia hạn (nếu có): khơng 1.5.3 Thực thực tế: từ tháng 03 năm 2021 đến tháng 03 năm 2022 1.6 Những thay đổi so với thuyết minh ban đầu (nếu có): Khơng 1.7 Tổng kinh phí đƣợc phê duyệt đề tài: 55 triệu đồng II Kết nghiên cứu Đặt vấn đề Khí tổng hợp tiền chất quan trọng để sản xuất nhiên liệu tổng hợp thông qua phản ứng Fischer-Tropsch sản xuất methanol Có phƣơng pháp để sản xuất khí tổng hợp: (1) khí hóa than đá, (2) oxy hóa phần khí thiên nhiên (3) reforming khí thiên nhiên nƣớc Tuy nhiên, trình phát sinh lƣợng lớn khí CO2 gây hiệu ứng nhà kính Do đó, sản xuất khí tổng hợp mà khơng phát sinh CO2 phƣơng pháp phù hợp với xu phát triển hài hòa sử dụng tài nguyên, phát triển công nghệ bảo vệ môi trƣờng Reforming methane CO2 đƣợc xem phƣơng pháp phù hợp cho ngành cơng nghiệp hóa chất bền vững Kim loại cobalt, với tính chất bền nhiệt sẵn có, thể hoạt tính cao cho phản ứng reforming methane đƣợc xem xúc tác tiềm cho trình cơng nghiệp giảm hoạt tính việc hình thành cặn carbon nhƣợc điểm chƣa thể giải Nghiên cứu tập trung khảo sát vai trò chất xúc tiến lathanium hệ xúc tác cobalt mang Al2O3 ảnh hƣởng thơng số động học đến phản ứng reforming methane Tính chất xúc tác trƣớc sau phản ứng đƣợc đánh giá phƣơng pháp phân tích nhƣ: XRD, TPR, phân tích hấp phụ/giải hấp N2, Raman, … Hoạt tính xúc tác đƣợc đánh giá hệ phản ứng tầng cố định, số liệu ảnh hƣởng thơng số động học đƣợc phân tích phần mềm Polymath nhằm xác định chế phản ứng Mục tiêu a) Mục tiêu tổng quát Trong nghiên cứu này, tác giả tập trung nghiên cứu tổng hợp hệ xúc tác cobalt chất mang có cấu trúc xốp phƣơng pháp bay dung môi tự hình thành cấu trúc (EISA) đánh giá hoạt tính xúc tác cho phản ứng reforming methane CO2 b) Mục tiêu cụ thể - Thiết kế đƣợc hệ xúc tác bao gồm chất mang Al2O3 có cấu trúc xốp trung bình, chất xúc tác cobalt chất xúc tiến lathanium oxit khảo sát ảnh hƣởng hàm lƣợng chất xúc tiến đến hoạt tính xúc tác cho phản ứng reforming methane CO2 - Khảo sát ảnh hƣởng áp suất riêng phần tác chất đến độ chuyển hóa, hiệu suất hình thành carbon bề mặt xúc tác từ thiết lập mơ hình động học phản ứng Phƣơng pháp nghiên cứu Nội dung 1: Phân tích, đánh giá tình hình nghiên cứu nƣớc phản ứng reforming methane CO2 - Cách tiếp cận: Xuất phát từ nhu cầu thực tế Việt Nam để đề xuất phƣơng pháp nghiên cứu giải vấn đề - Kết quả: Báo cáo tổng hợp đánh giá tình hình nghiên cứu, mục tiêu, tính cấp thiết đề tài, tổng quan cơng trình nghiên cứu ngồi nƣớc Nội dung 2: Tổng hợp xúc tác xLa-10%Co/Al2O3 (x: – %) - Cách tiếp cận: Dựa vào kỹ thuật tổng hợp có nhằm tổng hợp vật liệu có cấu trúc trung bình, ứng dụng làm chất mang cho xúc tác lựa chọn nguyên liệu có khả ứng dụng quy mơ cơng nghiệp để hình thành hệ xúc tác cho phản ứng reforming methane CO2 - Kết quả: Mẫu xúc tác có cấu trúc xốp trung bình hạt kim loại có kích thƣớc nano Nội dung 3: Đánh giá tính chất hóa lý xúc tác xLa-10%Co/Al2O3 (x: – %) - Cách tiếp cận: Các tính chất liên quan đến hoạt tính cho phản ứng reforming methane CO2 đƣợc đánh giá nhƣ: Kích thƣớc phân tử cobalt, tính chất xốp hệ xúc tác, tính chất khử xúc tác, tính acid/bazo xúc tác… - Kết quả: Tính chất xúc tác, mối liên quan hàm lƣợng chất xúc tiến tính chất hóa lý hệ xúc tác đƣợc làm rõ Nội dung 4: Đánh giá hoạt tính xúc tác xLa-10%Co/Al2O3 (x: – %) cho phản ứng reforming methane CO2 - Cách tiếp cận: Hoạt tính xúc tác đƣợc đánh giá dựa độ chuyển hóa tác chất (CH4, CO2), hiệu suất hình thành sản phẩm (H2, CO) tỉ lệ thành phần H2/CO - Kết quả: Kết hoạt tính xúc tác đƣợc đánh giá cho phản ứng reforming methane, hoạt tính xúc tác đƣợc so sánh rút mối quan hệ hàm lƣợng chất xúc tiến khả hoạt động xúc tác Nội dung 5: Đánh giá tính chất xúc tác sau trình sử dụng cho phản ứng reforming methane CO2 - Cách tiếp cận: Các tính chất có ảnh hƣởng đến thời gian hoạt động xúc tác nhƣ: Hàm lƣợng carbon hình hành, loại carbon hình thành, hình thái carbon hình thành, đƣợc đánh giá chi tiết phân tích hiên đại - Kết quả: Kết phân tích xúc tác sau trình phản ứng reforming methane CO2 Nội dung 6: Đánh giá ảnh hƣởng áp suất riêng phần CO2 CH4 đến phản ứng reforming methane xúc tác với hàm lƣợng chất xúc tiến tối ƣu khác - Cách tiếp cận: Sự thay đổi điều kiện nhập liệu đến khả làm việc xúc tác cho phản ứng reforming methane CO2 đƣợc đánh giá nhằm phân tích phạm vi hoạt động xúc tác - Kết quả: Kết đánh giá hoạt tính xúc tác thay đổi điều kiện nhập liệu Nội dung 7: Nghiên cứu chế phản ứng reforming methane xúc tác với hàm lƣợng chất xúc tiến tối ƣu - Cách tiếp cận: Cơ chế phản ứng reforming methane xúc tác với hàm lƣợng chất xúc tiến tối ƣu đƣợc làm sáng tỏ dựa mơ hình động học nhƣ định luật Power Law, mơ hình Langmuir–Hinshelwood … - Kết quả: Kết mô tả chế phản ứng reforming methane CO2 xúc tác với hàm lƣợng chất xúc tiến tối ƣu Nội dung 8: Viết báo cáo báo tổng kết - Cách tiếp cận: Dựa kết nghiên cứu, viết báo cáo phân tích cơng bố tạp chí chun ngành có uy tín - Kết quả: Bài báo cơng bố tạp chí ISI Tổng kết kết nghiên cứu Đề tài đạt đƣợc kết nghiên cứu sau:  Đã tổng quan vai trò, ứng dụng khí tổng hợp ngành cơng nghiệp hóa chất, đồng thời phân tích đánh giá hoạt tính ƣu nhƣợc điểm loại xúc tác cho phản ứng reforming methane để sản xuất khí tổng hợp  Đã đánh giá đƣợc ảnh hƣởng chất xúc tiến Lanthanum đến tính chất hóa lý xúc tác Cobalt; khảo sát hoạt tính xúc tác cho phản ứng reforming methane  Đã phân tích đƣợc ảnh hƣởng hàm lƣợng chất xúc tiến đến tính chất hóa lý xúc tác hoạt tính xúc tác cho trình reforming methane  Đã khảo sát ảnh hƣởng thông số công nghệ nhƣ: Nhiệt độ, áp suất riêng phần đến hiệu suất, độ chuyển hóa phản ứng reforming methane xúc tác tối ƣu  Đã tính tốn nhiệt động đề xuất chế phản ứng reforming methane xúc tác tối ƣu  Đã phân tích thành phần chất xúc tác sau phản ứng, mối liên quan hàm lƣợng chất xúc tiến thành phần carbon tạo thành sau phản ứng đƣợc làm sáng tỏ Đánh giá kết đạt đƣợc kết luận Topics in Catalysis (2021) 64:338–347 https://doi.org/10.1007/s11244-021-01428-x ORIGINAL PAPER CO2 Reforming of ­CH4 on Mesoporous Alumina‑Supported Cobalt Catalyst: Optimization of Lanthana Promoter Loading Ngoc Thang Tran1,2 · P. Senthil Kumar3 · Quyet Van Le4 · Nguyen Van Cuong2 · Pham T. T. Phuong5 · A. A. Jalil6 · Gaurav Sharma7 · Amit Kumar7 · Ajit Sharma8 · Bamidele Victor Ayodele9 · Sumaiya Zainal Abidin1 · Dai‑Viet N. Vo10  Accepted: 12 March 2021 / Published online: 17 May 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The impact of ­La2O3 promoter loading on alumina-supported cobalt catalysts was investigated in terms of physicochemical properties and catalytic performance for C ­ O2 reforming of methane (CRM) at stoichiometric C ­ H4/CO2 ratio and 1023 K Both ­Co3O4 (with crystal size: 5.2–8.4 nm) and ­La2O3 nanoparticles were finely dispersed on support surface The promotional ­La2O3 effect could noticeably increase ­CH4 and C ­ O2 conversions to 29.3% and 17.3%, correspondingly due to improved basic site concentration and decreasing crystallite size of active metal in association with promoter addition 5%La loading was an optimal promoter content for reactant conversions as well as yield of H ­ and CO 5%La-10%Co/Al2O3 also exhibited the highest resistance to carbon deposition owing to the basic nature, redox feature and oxygen vacancy of ­La2O3 dopant Notably, the ­H2/CO ratio obtained within 0.84–0.98 is preferable for Fischer-Tropsch reaction in downstream to yield liquid hydrocarbon fuels Keywords  Mesoporous alumina · CO2 Reforming · Cobalt · Hydrogen · Syngas · Carbon dioxide 1 Introduction Syngas, a H ­ and CO mixture, has been broadly recognized as an important feedstock in petrochemical industry as it is the main reactant for yielding renewable synthetic fuels through Fischer-Tropsch reaction [1–5] and methanol * Dai‑Viet N Vo vndviet@ntt.edu.vn; daivietvnn@yahoo.com; vo.nguyen.dai.viet@gmail.com Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Kuantan, Pahang, Gambang, Malaysia Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St, Go Vap, Ho Chi Minh City 7000, Vietnam Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603 110, India Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam Institute of Chemical Technology, Vietnam Academy of Science and Technology, Mac Dinh Chi Str., Dist.1, Ho Chi Minh City, Vietnam 13 Vol:.(1234567890) production [6] to substitute conventional fossil fuels Coal gasification [7], catalytic partial oxidation and steam reforming of natural gas [8–10] are currently common large-scale processes for producing syngas However, the inevitable emissions of undesirable and excessive C ­ O2 by-product from the abovementioned processes are the presently School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 Johor, Malaysia International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Himachal Pradesh, Solan 173229, India Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, India Institute of Energy Policy and Research, Universiti Tenaga Nasional, IKRAM‑UNITEN 43000 Selangor, Malaysia 10 Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam Topics in Catalysis (2021) 64:338–347 environmental concern and provoke greenhouse effects [11, 12] Thus, ­CO2 reforming of methane (CRM) has recently emerged as a potential alternate method for yielding syngas as this process consumes two greenhouse gases, i.e., ­CO2 and ­CH4 as feedstocks and hence harmonizing resources, advanced technologies and environmental cycles in the future scenario of petrochemical industry [13–15] The noble metals, namely, Pt, Rh, and Ru have been reportedly effective for accelerating CRM performance; however, their limited available resources and high cost have largely obstructed these materials from the large-scale applications [16, 17] Recently, the highly available cobaltbased catalysts with thermal stability have shown comparable performance to precious metals in CRM and appeared to be potential alternative CRM catalysts for industrial implementation [16] Though, these catalysts still suffered from deactivation at high reaction temperature mainly due to carbonaceous deposition on active sites [18–20] The utilization of appropriate promoters with basic or redox properties is widely reported as an efficient approach for impeding carbon deposition In fact, Zeng et al has reported that mixed rare earth oxides addition improved sintering-resistant ability and enhanced anti-coke capability of metallic cobalt in reforming processes [21] Shafiqah et al has also proved the basic character and redox cycling attribute of Ce promoter reduced considerably total carbon deposition on Cu metal during ethanol dry reforming [22] Although L ­ a2O3 has similar features to other rare earth oxides, less attention has been given to the function of ­La2O3 promoter and its loading for the performance of Co-based catalyst on CRM Additionally, in our recent work [23], we have successfully synthesized the filament-shaped mesoporous alumina support for Co catalyst with comparable CRM performance to noble metal catalysts The further usage of ­La2O3 promoter for this Co supported on mesoporous ­Al2O3 could boost the CRM activity and it has not been systematically investigated before Thus, in this work, the impact of ­La2O3 dopant loading on physicochemical attributes of mesoporous A ­ l2O3-supported Co catalyst was investigated The CRM activity of this catalyst system and coke formation behavior were also examined 2 Experimental Section 2.1 Catalyst Preparation Mesoporous γ-Al 2O was prepared via employing the solvent evaporation self-assembly method as thoroughly described in our previous paper [23] In particular, 2.94 g of a mesopore-directing Pluronic triblock copolymer template, composed of poly(ethylene glycol), poly(propylene glycol), and poly(ethylene glycol) blocks (MW = 5800, SigmaAldrich) and 11.04 g of aluminum nitrate nonahydrate (98%, 339 Merck Millipore) were sequentially dissolved in 44.10 ml of 75 vol.% ethanol aqueous solution After that, 4.80 ml of HCl solution (37%, Merck Millipore) was dropwise added into the above-mentioned stirring mixture The resulting blend was further mixed for h before transferring to a Teflon-lined autoclave for the 24 h aging at 373 K After naturally cooled to room temperature, resulting mixture was discharged from the autoclave and dried at 333 K in a Memmert UF1060 oven for 48 h, followed by calcination for h in a Carbolite furnace (CWF 1200) at 1073 K and K m ­ in−1 to yield white γ-Al2O3 powder For preparing x%La-10%Co/Al2O3 (x: 2, 3, 4, 5, and 8), the co-impregnation technique was used for embedding La and Co metal oxides on the as-synthesized mesoporous γ-Al2O3 support An accurately predetermined quantity of Co(NO3)2.6H2O (Sigma-Aldrich) and La(NO3)3.6H2O (Merck KGaA) was dissolved in anhydrous ethanol before impregnating on calcined γ-Al2O3 The obtained solid was subsequently dried overnight at 373 K and air-calcined for h at 873 K to produce x%La-10%Co/Al2O3 catalysts The aforementioned process was also applied for undoped 10%Co/Al2O3 preparation in which lathanium precursor was not added to the impregnation solution 2.2 Catalyst Characterization Textural attributes, namely, specific Brunauer-Emmett-Teller (BET) surface area, average pore diameter and pore volume of materials were inspected in a volumetric N ­ adsorption Tristar II 3020 apparatus (Micrometrics, Norcross, GA, US) at 77 K Before each analytical measurement, ­N2 was purged through sample at 573 K for 60 to eliminate volatile contaminants The crystal phase identification for the virgin catalysts was conducted on a Miniflex 600 X-ray Rigaku instrument The apparatus was run at 40 kV and 15 mA with the wavelength (λ) of 1.54 Å and a CuKα radiation source The Bragg angle (2θ) was ranged from to 80° at rate of 1° ­min−1 whilst step size was used as 0.02° All detected peaks were identified based on the Joint Committee on Power Diffraction Standards (JCPDS) database [24] The mean size of ­Co3O4 crystallite ( dCo3 O4 ) was calculated using Scherrer equation expressed in Eq (1) [25] dCo3 O4 = 0.94 × λ β × Cos𝜃 (1) where β is the full-width at half-maximum (FWHM) of the determined peak H2 temperature-programmed reduction ­(H2-TPR) was tested in Micromeritics AutoChem II-2920 instrument Roughly 50 mg of catalyst immobilized at the middle of a quartz U-tube were purged with N ­ for 30 at 373 K 13 340 before undergoing H ­ reduction in 50 ml m ­ in−1 of 10%H2/ N2 with rising temperature toward 1173 K at 10 K ­min−1 The abovementioned AutoChem II-2920 equipment was also used for analyzing ­CO2 temperature-programmed desorption ­(CO2-TPD) All samples were initially subjected to ­H2 pretreatment at 1073 K in 10%H2/Ar (60 ml m ­ in−1) for h and afterward cooled down in N ­ flow to 423 K C ­ O2 adsorption was executed at this temperature by exposing the reduced sample to 10%CO2/Ar (60 ml m ­ in−1) for h The excess ­CO2 was swept out of the gas phase by purging with N ­ flow for 30 before desorption step The desorbed ­CO2 measurement was subsequently conducted via heating to 1073 K with 10 K m ­ in−1 and the quantity of ­CO2 released was detected with time on-stream by the thermal conductivity detector The amount of deposited carbon during reaction was quantified via the temperature-programmed oxidation (TPO) conducted on TGA Q500 thermogravimetric equipment (TA Instruments) The sample was first degassed under ­N2 flow (100 ml ­min−1) at 373 K for 0.5 h, followed by switching the purge gas to 20%O2 in N ­ with the same flow rate Oxidation temperature was increased from 373 to 1023 K with 10 K m ­ in−1 and the oxidation state was maintained at 1023 K for 0.5 h The Raman spectra of used catalysts were measured in a micro-Raman system Horiba XploRA ONE™ (Horiba Scientific, France) Topics in Catalysis (2021) 64:338–347 Particularly, reactant conversions (Xi and i: ­CH4 or ­CO2) and product yields ( YH2 and YCO ) as well as H ­ 2/CO ratio were computed via Eqs (2-5) as follows Xi (%) = − Gout Gin i i YCO (%) = Gin i Gout CO Gin + Gin CH CO YH2 (%) = × 100% Gout H 2Gin CH × 100% (2) (3) × 100% (4) and Gout H2 H = out2 CO GCO (5) where Gin and Gout are molar flow rates (mol ­s−1) of gaseous components in the inlet and outlet of reactor, respectively 3 Results and Discussion 3.1 Catalyst Attributes Assessment 2.3 Catalyst Activity Assessment for CRM 3.1.1 Textural Properties All CRM experiments were executed in a stainless steel tubular fixed-bed reactor with 3/8 inch outer diameter and 17 inches length at 1023 K and atmospheric pressure with a stoichiometric ­CO2/CH4 ratio of unity In general, about 100 mg of catalyst was used for each run and positioned at the center of reactor The flow of all gases, i.e., reactants ­(CO2 and ­CH4), ­N2 diluent and 50%H2/N2 reducing agent was individually and accurately regulated by Alicat Scientific mass flow controllers Before CRM test, catalyst activation was in situ conducted under the flow of 50%H2/ N2 at 1073 K for h and the gas hourly space velocity was set at 36 L g­ cat−1 ­h−1 for both H ­ 2-pretreatment and CRM evaluation The preliminary calculation in our previous paper [23] showed that with the abovementioned reaction conditions, all CRM tests were outside of the transportlimited zones with minimal influence of mass and heat transfer resistances Gaseous composition in feedstock and product was quantified via a gas chromatography system equipped with a thermal conductivity detector (Agilent GC Model 6890 series, Agilent Technologies) To verify the accuracy of experimental works, mass balance was carried out for all runs and the errors were observed from 2.15 to 5.18% The physical features of pristine A ­ l2O3 support, and catalysts are presented in Table 1 The specific BET surface area and total pore volume of bare ­Al2O3 (173.4 ­m2 ­g−1 and 0.28 ­cm3 ­g−1, correspondingly) are comparable to those of commercial alumina such as Sasol Puralox SCCa-150/200 (175.3 ­m2 ­g−1 and 0.46 c­ m3 ­g−1) [26] and A ­ l2O3 (Brockmann I) from Sigma-Aldrich Chemicals (174.1 m ­ ­g−1 and 0.38 c­ m3 ­g−1) [27] The surface area of 10%Co/Al2O3 was about 141.9 m ­ −1 −1 ­ ­g (for ­g and a noticeable drop in BET values to 107.9 m 8%La-10%Co/Al2O3) was observed with increasing La loadings The promoter addition induced a predictable decline in surface area signifying the successful L ­ a2O3 incorporation on ­Al2O3 support N2 adsorption-desorption curves for A ­ l2O3, 10%Co/Al2O3 and promoted 10%Co/Al2O3 catalysts are presented in Fig S1 of supplementary data Interestingly, all adsorptiondesorption plots were apparently recognized as the type IV according to the IUPAC categorization and exhibited well-defined H1 hysteresis loops at relative pressure, P/P0 about 0.5 to 0.9 These typical attributes belonged to the mesoporous materials [28, 29] Interestingly, in comparison with A ­ l2O3 support, the isotherm plots of both promoted and unpromoted catalysts 13 Topics in Catalysis (2021) 64:338–347 Table 1  Physical attributes of support and catalysts used in this work 341 Material Specific BET surface area ­(m2 ­g-1) Total pore volume ­(cm3 ­g-1) Average pore diameter (nm) Average ­Co3O4 crystallite size (nm)(*) Al2O3 10%Co/Al2O3 2%La-10%Co/Al2O3 3%La-10%Co/Al2O3 4%La-10%Co/Al2O3 5%La-10%Co/Al2O3 8%La-10%Co/Al2O3 173.4 141.9 138.0 136.4 134.7 123.6 107.9 0.28 0.22 0.21 0.21 0.20 0.18 0.18 6.5 6.3 6.3 6.3 6.0 5.9 6.5 – 10.0 5.2 7.8 7.8 8.4 7.0 (*)Crystallite ­Co3O4 size was computed via Scherrer equation with 2θ: 37.03o show the analogous shape Additionally, the negligible variation in average pore diameter from 5.9 to 6.5 nm (cf Table 1) amongst abovementioned samples would suggest that the structural system of ­Al2O3 support was not significantly changed during metals loading with the fine dispersion of L ­ a2O3 and C ­ o3O4 nanoparticles in agreement with other studies [28, 30] samples, ­Co3O4 and ­CoAl2O4 phases were clearly observed Particularly, the signals of C ­ o3O4 phase were detected at 31.3°, 37.0°, 44.9°, and 55.8° (JCPDS card No 74-2120) [32] whilst the cobalt aluminate spinel, C ­ oAl2O4 with characteristic peaks at 59.6°, and 65.4° (JCPDS card No 82-2246) was formed because of a strong interaction between γ-Al2O3 support and CoO active metal [33] For La-promoted catalysts, the distinct peaks of ­La2O3 crystalline at 2θ: 29.9° and 53.4o (JCPDS card No 83-1355) [22, 34] were not identified on samples with low La loadings of 2% and 3% (see Fig. 1c, d) However, these small typical ­La2O3 peaks appeared at higher La contents of 4-8% (see Fig. 1e–g) These observations would suggest that ­La2O3 nanoparticles were finely distributed on catalyst surface with tiny size and at low promoter loading of 2–3%, the crystallite size of ­La2O3 would be outside of the XRD detection limit [35, 36] The average ­Co3O4 crystallite size of catalysts is summarized in Table 1 The unpromoted catalyst had a small ­Co3O4 crystallite size of 10 nm and interestingly, L ­ a2O3 addition significantly reduced the crystallite size of ­Co3O4 phase to 5.2–8.4 nm depending on promoter loadings The decreasing ­Co3O4 crystallite size with ­La2O3 promotion could be attributed to the ­La2O3 dilution effect hindering active metal agglomeration [28, 37], and hence improving the degree of coke suppression in CRM [38, 39] In a study of methane steam reforming, Christensen et al reported that [40] small crystals possessed higher carbon saturation concentration during reforming posing the lesser driving force for carbon diffusion Therefore, coke formation was suppressed on tiny crystals 3.1.2 X‑Ray Powder Diffraction Measurement 3.1.3 H2 Temperature‑Programmed Reduction Analysis The X-ray powder diffraction (XRD) spectra of support and catalysts are displayed in Fig. 1 The gamma-Al2O3 support (cf Fig. 1a) was evidently formed based on the detected 2θ peaks at 37.4°, 39.6°, 46.0°, 67.0° and 77.1° (JCPDS card No 04-0858) [28, 31] In promoted and unpromoted Figure 2 shows H ­ 2-TPR behaviors of selected La-promoted and unpromoted catalysts Regardless of sample types, three separate reduction peaks were observed in all patterns Particularly, the first two apparent peaks, named as α and β, were ascribed to the two-step reduction of ­Co3O4 to Co° Fig. 1  XRD profiles of a ­Al2O3, b 10%Co/Al2O3, c 2%La-10%Co/ Al2O3, d 3%La-10%Co/Al2O3, e 4%La-10%Co/Al2O3, f 5%La10%Co/Al2O3, and g 8%La-10%Co/Al2O3 13 342 Topics in Catalysis (2021) 64:338–347 indicating the existence of weak and strong basic sites on material surface, respectively [22, 44] The amount of C ­ O2 adsorbed on A ­ l2O3 support was about 3.89 × 1­ 0−2 mmol C ­ O2 ­gcat−1 and this value was reduced to 3.62 × ­10−2 mmol ­CO2 ­gcat−1 for 10%Co/Al2O3 (see inset in Fig. 3) in line with results from Papageridis et al [45] Interestingly, ­La2O3 addition substantially enhanced the basic site density of unpromoted catalyst and the amount of adsorbed ­CO2 enlarged with growing promoter loading from to 8% In fact, 8%La-10%Co/Al2O3 had the greatest quantity of adsorbed ­CO2 of 7.72 × 1­ 0−2 mmol C ­ O2 ­gcat−1 The basicity of catalyst is an important factor in CRM for guaranteeing the great catalytic activity and stability The promotion of ­La2O3 improved the basic concentration of catalyst due to its basic nature and capability of electrons donation to Co active metal and hence the excess electron density on catalyst surface increased the basic attribute 3.2 Catalytic Performance for CRM Fig. 2  H2-TPR results for a 10%Co/Al2O3, b 3%La-10%Co/Al2O3, c 4%La-10%Co/Al2O3, d 5%La-10%Co/Al2O3, and e 8%La-10%Co/ Al2O3 metal via CoO intermediate phase formation (peak α), which was then reduced to Co° phase (peak β) [41, 42] The negligible and broad signal (peak γ) appearing at above 1000 K was attributed to cobalt aluminate spinel reduction to active ­Co0 metal in agreement with other studies [41] The trivial intensity of peak γ would be indicative of a relatively small amount of C ­ oAl2O4 in comparison with ­Co3O4 phase in catalysts Hence, the insignificant content of unfavorable and unavoidable ­CoAl2O4 would not induce a substantial effect on catalyst performance As depicted in Fig. 2, a decline in the reduction temperature of peak α from 768 K (10%Co/Al2O3) to 618 K (8%La-10%Co/Al2O3) with rising La loadings from to 8% was clearly evident The promotion of ­La2O3 alleviated the ­Co3O4 → CoO reduction process reasonably because of the enhanced electron density on catalyst surface induced by ­La2O3 phase acting as an electron donor [43] 3.1.4 CO2 Temperature‑Programmed Desorption In order to examine the function of L ­ a2O3 promoter on the basicity of catalysts, C ­ O2-TPD analysis was conducted on selected samples including A ­ l2O3 support, 10%Co/Al2O3, 3%La-10%Co/Al 2O 3, 5%La-10%Co/Al 2O and 8%La10%Co/Al2O3 As seen in Fig. 3, there was a broad peak appearing in temperature range from 450 to 950 K for each sample These peaks were deconvoluted into peaks PI (located at 450–550 K) and PII (from 600 to 700 K) 13 The CRM was conducted over as-prepared catalysts to evaluate the role of La loading on catalyst performance The time-on-stream (TOS) conversion of C ­ H4 and C ­ O2 at reaction temperature of 1023 K and stoichiometric feedstock is shown in Figs. 4 and 5, respectively Generally, promoted and unpromoted catalysts exhibited stable C ­ H4 conversion with TOS The promotion of L ­ a2O3 greatly enhanced C ­ H4 conversion from 70.0% (10%Co/Al2O3) to 90.5% (5%La10%Co/Al2O3) as shown in Fig. 4 The identical behavior was also observed for ­CO2 conversion with La addition and ­CO2 conversion was increased from 77.1 to 90.4% (see Fig.  5) The improvement of C ­ H4 and C ­ O2 conversions on La-promoted catalysts was attributed to smaller C ­ o 3O crystallite size induced by promoter dilution effect [46] in which ­La2O3 particles act as spacers to segregate ­Co3O4 grains, thereby preventing them from thermal sintering Additionally, the basic feature of L ­ a2O3 dopant facilitates ­CO2 adsorption and the gasification of surface carbon species, ­CxHy from ­CH4 dissociation [22, 47] Thus, the Lapromoted catalysts would have less carbon deposition and improved reactant conversions in comparison with unpromoted counterpart As seen in Figs. 4 and 5, increasing La loadings substantially enhanced ­CH4 and ­CO2 conversions and the optimal activity was achieved at 5%La loading However, a considerable drop in ­CH4 and ­CO2 conversions to 82.1% and 86.0%, correspondingly was observed at La loading of 8% The decline in CRM performance over 8%La-10%Co/Al2O3 was ascribed to the excessive La metal loading inducing support pore blockage [30, 48] and the suppressed accessibility of reactants to the active ­Co0 metal phase The impact of dopant loading on product yields and the ratio of ­H2 to CO is presented in Fig. 6 Irrespective Topics in Catalysis (2021) 64:338–347 343 Fig. 3  CO2-TPD results of ­ l2O3, 10%Co/Al2O3, 3%LaA 10%Co/Al2O3, 5%La-10%Co/ Al2O3 and 8%La-10%Co/Al2O3 samples Fig. 4  The time-on-stream conversion of C ­ H4 over La-promoted 10%Co/Al2O3 system having various La loadings Fig. 5  The TOS conversion of C ­ O2 over La-promoted 10%Co/Al2O3 catalysts with various La loadings 13 344 Topics in Catalysis (2021) 64:338–347 Fig. 6  Effect of La loading on product yields and H ­ 2/CO ratio of CRM on La-promoted catalyst system of employed catalysts, ­H2/CO ratio was inferior to the ideally stoichiometric ­H2/CO value of unity signifying the copresence of reverse water-gas shift side reaction (see Eq (7)) during CRM in agreement with other studies [16, 49] Depending on catalysts used, the ­H2/CO ratio approximately varied within 0.84–0.98 desirable for green liquid hydrocarbon fuels production via downstream Fischer-Tropsch reaction [50, 51] CO2 + H2 ⇄ CO + H2 O (6) Interestingly, both H ­ and CO yields also improved significantly with rising La loadings and reached the highest values of 77.9% and 79.6%, respectively at 5%La loading This observation further confirmed that 5%La-10%Co/Al2O3 was the best catalyst with respect to product yields and reactant conversions Fig. 7  Raman spectra of spent catalysts with various promoter loadings after CRM at 1023 K and graphitic carbons oxidation, respectively The promotion of ­La2O3 not only shifted peak P1 to a lower temperature zone but also lessened the intensity of peak P2 This observation is suggestive of the enhanced reactiveness of amorphous carbon and reducing graphite formation on promoted catalysts in line with other studies [33] As seen in the inset of Fig. 8, the presence of L ­ a2O3 promoter reduced the amount of accumulated carbon from 47.7% (10%Co/Al2O3) to 34.6% (5%La-10%Co/Al2O3) The reduction in carbon deposit could be due to the increasing basic site density on La-promoted catalyst (see Fig. 3) facilitating the likely or 3.3 Deposited Carbon Assessment The types of deposited carbon and quantity of it on the used catalyst surface were accurately determined by Raman analysis and TPO measurement, respectively The Raman scattering characterization of deposited carbon on spent catalysts is expressed in Fig. 7 Two Raman bands detected at 1339 and 1574 c­ m−1 in all spectra verified the co-existence of disordered amorphous and ordered graphitic carbons belonging to D and G bands, respectively [28, 52] The amount of accumulated carbon on selected spent catalysts through TPO measurements is shown in Fig. 8 Like Raman results (see Fig. 7), two distinguished peaks P1 and P2 appearing in the derivative weight plots of promoted and unpromoted samples were assigned to amorphous 13 Fig. 8  Derivative weight TPO profiles of selected spent 10%Co/ Al2O3, 3%La-10%Co/Al2O3, 5%La-10%Co/Al2O3, and 8%La-10%Co/ Al2O3 Topics in Catalysis (2021) 64:338–347 Scheme  1  Mechanism for carbonaceous deposition removal from catalyst surface with the assistance of ­La2O3 promoter 345 were investigated Both Co and La metal oxides were well distributed on ­Al2O3 surface with small ­Co3O4 crystal size within 5.2–8.4 nm The alleviated reduction process (for ­Co3O4 → CoO) and increasing basic site concentration of catalyst were clearly evident with ­La2O3 incorporation The ­CO2 reforming of methane using ­CH4/CO2 = 1:1 and 1023 K showed that the rising basic site concentration and lowering active metal crystallite size associated with ­La2O3 promotion improved the conversion of ­CH4 and ­CO2 toward 29.3% and 17.3%, correspondingly The promotion of ­La2O3 significantly suppressed carbon deposition from 47.7% to 34.6% owing to the basic feature of promoter and formed intermediate ­La2O2CO3 phase simultaneously removing surface carbonaceous species from catalyst surface during CRM Amongst promoted catalysts, 5%La-10%Co/Al2O3 was the best catalyst regarding carbon resistance, reactant conversions and yield of CO and H ­ The resulting H ­ 2/CO ratios of 0.84–0.98 are suitable for Fischer-Tropsch reaction in downstream in order to generate liquid hydrocarbon fuels Supplementary Information  The online version contains supplementary material available at https://d​ oi.o​ rg/1​ 0.1​ 007/s​ 11244-0​ 21-0​ 1428-x Acknowledgments  Mr.Ngoc Thang Tran would like to acknowledge the financial support from IUH Research Grant Scheme to conduct this study (21/1H04) This research is also funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 104.05-2019.344 Fig. 9  The correlation between catalyst performance and carbon formation rate potential formation of L ­ a2O2CO3 intermediate phase from ­La2O3 and ­CO2 interaction (see Scheme 1) [52] This intermediate phase could further oxidize the carbonaceous species from catalyst surface to maintain catalytic activity [33] Interestingly, as illustrated in Fig. 9, the yield of CO and ­H2 exponentially decreased with rising carbon formation rate which was calculated based on time average The exponential decay in ­CH4 and C ­ O2 conversions was also evidenced when carbon formation rate increased from 1.84 × 1­ 0−5 to 3.17 × 1­ 0−5 ­gcarbon ­gcat−1 ­s−1 This relationship convincingly confirms that deposited carbon formation rate is the main factor adversely affecting the catalytic CRM performance as ­Co0 active site was surrounded by deposit carbon 4 Conclusion The function of L ­ a2O3 promoter and the effect of its loading on the physical and chemical features as well as CRM performance of Co catalysts dispersed on A ­ l2O3 support References Davis BH (2001) Fischer-Tropsch synthesis: current mechanism and futuristic needs Fuel Process Technol 71(1–3):157–166 https://​doi.​org/​10.​1016/​S0378-​3820(01)​00144-8 Liu B, Li W, Xu Y, Lin Q, Jiang F, Liu X (2019) Insight into the intrinsic active site for selective production of light olefins in Cobalt-catalyzed Fischer-Tropsch synthesis ACS Catal 9(8):7073–7089 https://​doi.​org/​10.​1021/​acsca​tal.​9b003​52 Sharma D, Rodriguez DG, Gleeson MA, Weststrate CJ, Gleeson MA, Fredriksson HOA, Niemantsverdriet JW (2020) Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions Nat Commun 11(1):1–10 https://​doi.​org/​10.​1038/​s41467-​020-​14613-5 Santos GRS, Basha OM, Wang R, Ashkanani H, Morsi B (2020) Techno-economic assessment of Fischer-Tropsch synthesis and direct methane-to-methanol processes in modular GTL reactors Catal Today In press https://​doi.​org/​10.​1016/j.​cattod.​2020.​07.​ 012 Liu Y, Kamata H, Ohara H, Izumi Y, Ong DSW, Chang J, Poh CK, Chen L, Borgna A (2020) Low-olefin production process based on Fischer-Tropsch synthesis: process synthesis, optimization, and techno-economic analysis Ind Eng Chem Res 59(18):8728–8739 https://​doi.​org/​10.​1021/​acs.​iecr.​0c005​42 Lee JK, Lee IB, Han J (2019) Techno-economic analysis of methanol production from joint feedstock of coke oven gas and basic oxygen furnace gas from steel-making J Ind Eng Chem 75(25):77–85 https://​doi.​org/​10.​1016/j.​jiec.​2019.​02.​019 13 346 Zagorščak R, An N, Palange R, Green M, Krishnan M, Thomas HR (2019) Underground coal gasification–A numerical approach to study the formation of syngas and its reactive transport in the surrounding strata Fuel 253(1):349–360 https://​doi.​org/​10.​ 1016/j.​fuel.​2019.​04.​164 Nakyai T, Saebea D (2019) Exergoeconomic comparison of syngas production from biomass, coal, and natural gas for dimethyl ether synthesis in single-step and two-step processes J Clean Prod 241:118334 https://​doi.​org/​10.​1016/j.​jclep​ro.​2019.​118334 Gao N, Cheng M, Quan C, Zheng Y (2020) Syngas production via combined dry and steam reforming of methane over Ni-Ce/ZSM-5 catalyst Fuel 273(1):117702 https://​doi.​org/​10.​1016/j.​fuel.​2020.​ 117702 10 Elbadawi AAH, Ge L, Zhang J, Zhuang L, Liu S, Tan X, Wang S, Zhu Z (2020) Partial oxidation of methane to syngas in catalytic membrane reactor: Role of catalyst oxygen vacancies Chem Eng J 392:123739 https://​doi.​org/​10.​1016/j.​cej.​2019.​123739 11 Ma C, Zou C, Zhao J, Shi R, Li X, He J, Zhang X (2019) Pyrolysis characteristics of low-rank coal under a co-containing atmosphere and properties of the prepared coal chars Energ Fuel 33(7):6098– 6112 https://​doi.​org/​10.​1021/​acs.​energ​yfuels.​9b008​60 12 Yang Q, Li X, Yang Q, Huang W, Yu P, Zhang D (2019) Opportunities for ­CO2 utilization in coal to green fuel process: Optimal design and performance evaluation ACS Sustain Chem Eng 8(3):1329–1342 https://d​ oi.o​ rg/1​ 0.1​ 021/a​ cssus​ cheme​ ng.9​ b0297​ 13 Zhou L, Martirez JMP, Finzel J, Zhang C, Swearer DF, Tian S, Robatjazi H, Lou M, Dong L, Henderson L, Christopher P, Carter EA, Nordlander P, Halas NJ (2020) Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts Nat Energy 5(1):61–70 https://​doi.​org/​10.​1038/​ s41560-​019-​0517-9 14 Safavinia B, Wang Y, Jiang C, Roman C, Darapaneni P, Larriviere J, Cullen DA, Dooley KM, Dorman JA (2020) Enhancing ­CexZr1–x ­O2 activity for methane dry reforming using subsurface Ni dopants ACS Catal 10(7):4070–4079 https://d​ oi.o​ rg/1​ 0.1​ 021/​ acsca​tal.​0c002​03 15 Li L, Chen J, Zhang Q, Yang Z, Sun Y, Zou G (2020) Methane dry reforming over activated carbon supported Ni-catalysts prepared by solid phase synthesis J Clean Prod 274:122256 https://​doi.​ org/​10.​1016/j.​jclep​ro.​2020.​122256 16 Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Catalyst design for dry reforming of methane: Analysis review Renew Sustain Energy Rev 82(3):2570–2585 https://​doi.​ org/​10.​1016/j.​rser.​2017.​09.​076 17 Pakhare D, Spivey J (2014) A review of dry (­ CO2) reforming of methane over noble metal catalysts Chem Soc Rev 43(22):7813– 7837 https://​doi.​org/​10.​1039/​C3CS6​0395D 18 Park JH, Yeo S, Kang TJ, Heo I, Lee KY, Chang TS (2018) Enhanced stability of Co catalysts supported on phosphorusmodified ­Al2O3 for dry reforming of C ­ H4 Fuel 212(15):77–87 https://​doi.​org/​10.​1016/j.​fuel.​2017.​09.​090 19 Paksoy AI, Caglayan BS, Aksoylu AE (2015) A study on characterization and methane dry reforming performance of Co-Ce/ZrO2 catalyst Appl Catal B 168:164–174 https://​doi.​org/​10.​1016/j.​ apcatb.​2014.​12.​038 20 Horváth É, Bấn K, Varga E, Oszkó A, Vágó Á, Törő M, Erdőhelyi A (2017) Dry reforming of ­CH4 on Co/Al2O3 catalysts reduced at different temperatures Catal Today 281(2):233–240 https://​doi.​ org/​10.​1016/j.​cattod.​2016.​04.​007 21 Zeng S, Zhang L, Zhang X, Wang Y, Pan H, Su H (2012) Modification effect of natural mixed rare earths on Co/γ-Al2O3 catalysts for ­CH4/CO2 reforming to synthesis gas Int J Hydrog Energy 37(13):9994–10001 https://​doi.​org/​10.​1016/j.​ijhyd​ene.​2012.​04.​ 014 13 Topics in Catalysis (2021) 64:338–347 22 Shafiqah MNN, Tran HN, Nguyen TD, Pham TTP, Abdullah B, Lam SS, Nguyen-Tri P, Kumar R, Nanda S, Vo DVN (2020) Ethanol ­CO2 reforming on ­La2O3 and ­CeO2-promoted Cu/Al2O3 catalysts for enhanced hydrogen production Int J Hydrog Energy 45(36):18398–18410 https://​doi.​org/​10.​1016/j.​ijhyd​ene.​2019.​10.​ 024 23 Tran NT, Pham TLM, Nguyen TD, Van Cuong N, Siang TJ, Phuong PTT, Jalil AA, Truong QD, Abidin SZ, Hagos FY, Nanda S, Vo DVN (2020) Improvements in hydrogen production from methane dry reforming on filament-shaped mesoporous aluminasupported cobalt nanocatalyst Int J Hydrog Energy In press https://​doi.​org/​10.​1016/j.​ijhyd​ene.​2020.​06.​142 24 JCPDS powder diffraction file Swarthmore PA (2000) International Centre for Diffraction Data 25 Patterson AL (1939) The Scherrer formula for X-ray particle size determination Phys Rev 56:978–982 https://​doi.​org/​10.​1103/​ PhysR​ev.​56.​978 26 Fayaz F, Nga NTA, Pham TLM, Danh HT, Abdullah B, Setiabudi HD, Vo DVN (2018) Hydrogen production from ethanol dry reforming over lanthania-promoted Co/Al2O3 catalyst IIUM Eng J 19(1): 24-33 https://doi.org/https://​doi.​org/​10.​31436/​iiumej.​ v19i1.​813 27 Bahari MB, Phuc NHH, Alenazey F, Vu KB, Ainirazali N, Vo DVN (2017) Catalytic performance of La-Ni/Al2O3 catalyst for ­CO2 reforming of ethanol Catal Today 291:67–75 https://d​ oi.o​ rg/​ 10.​1016/j.​cattod.​2017.​02.​019 28 Tran NT, Van Le Q, Van Cuong N, Nguyen TD, Phuc NHH, Phuong PTT, Monir MU, Aziz AA, Truong QD, Abidin SZ, Nanda S, Vo DVN (2020) La-doped cobalt supported on mesoporous alumina catalysts for improved methane dry reforming and coke mitigation J Energy Inst 93(4):1571–1580 https://​ doi.​org/​10.​1016/j.​joei.​2020.​01.​019 29 Durán-Guevara MB, Ortiz-Landeros J, Pfeiffer H, Espitia-Cabrera MI, Contreras-García ME (2015) Potassium-based sorbents using mesostructured γ-alumina supports for low temperature C ­ O2 capture Ceram Int 41(2):3036–3044 https://d​ oi.o​ rg/​10.1​ 016/j.c​ eram​ int.​2014.​10.​140 30 Siang TJ, Pham TLM, Cuong NV, Phuong PTT, Phuc NHH, Truong QD, Vo DVN (2018) Combined steam and C ­ O2 reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts Micropor Mesopor Mat 262:122–132 https://​doi.​org/​10.​1016/j.​micro​meso.​2017.​11.​028 31 Feng Y, Zhang H, Fang L, Li W, Wang Y (2016) Novel threedimensional flower-like porous A ­ l2O3 nanosheets anchoring hollow NiO nanoparticles for high-efficiency lithium ion batteries J Mater Chem 4(29):11507–11515 https://​doi.​org/​10.​1039/​C6TA0​ 4323B 32 Mohammadi SZ, Beitollahi H, Allahabadi H, Rohani T (2019) Disposable electrochemical sensor based on modified screen printed electrode for sensitive cabergoline quantification J Electroanal Chem 847:113223 https://​doi.​org/​10.​1016/j.​jelec​hem.​ 2019.​113223 33 Fayaz F, Bach LG, Bahari MB, Nguyen TD, Vu KB, Kanthasamy R, Samart C, Nguyen-Huy C, Vo DVN (2019) Stability evaluation of ethanol dry reforming on Lanthania-doped cobalt-based catalysts for hydrogen-rich syngas generation Int J Energy Res 43(1):405–416 https://​doi.​org/​10.​1002/​er.​4274 34 Osorio-Vargas P, Campos CH, Navarro RM, Fierro JLG, Reyes P (2015) Rh/Al2O3-La2O3 catalysts promoted with ­CeO2 for ethanol steam reforming reaction J Mol Catal A Chem 407:169–181 https://​doi.​org/​10.​1016/j.​molca​ta.​2015.​06.​031 35 Campos CH, Osorio-Vargas P, Flores-González N, Fierro JLG, Reyes P (2016) Effect of Ni loading on lanthanide (La and Ce) promoted γ-Al2O3 catalysts applied to ethanol steam Topics in Catalysis (2021) 64:338–347 36 37 38 39 40 41 42 43 44 45 reforming Catal Lett 146(2):433–441 https://​doi.​org/​10.​1007/​ s10562-​015-​1649-6 Kondrat SA, Smith PJ, Lu L, Bartley JK, Taylor SH, Spencer MS, Kelly GJ, Park CW, Kiely CJ, Hutchings GJ (2018) Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical ­CO2 anti-solvent precipitation Catal Today 317:12–20 https://​doi.​org/​10.​1016/j.​cattod.​2018.​03.​046 Milt VG, Ulla MA, Lombardo EA (2000) Cobalt-containing catalysts for the high-temperature combustion of methane Catal Lett 65(1–3):67–73 https://​doi.​org/​10.​1023/A:​10190​61103​878 San José-Alonso D, Illán-Gómez MJ, Román-Martínez MC (2013) Low metal content Co and Ni alumina supported catalysts for the ­CO2 reforming of methane Int J Hydrog Energy 38(5):2230– 2239 https://​doi.​org/​10.​1016/j.​ijhyd​ene.​2012.​11.​080 Bahari MB, Setiabudi HD, Nguyen TD, Phuong PTT, Truong QD, Jalil AA, Ainirazali N, Vo DVN (2020) Insight into the influence of rare-earth promoter ­(CeO2, ­La2O3, ­Y2O3, and ­Sm2O3) addition toward methane dry reforming over Co/mesoporous alumina catalysts Chem Eng Sci 228:115967 https://​doi.​org/​10.​1016/j.​ ces.​2020.​115967 Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming Appl Catal A: Gen 314:9–22 https://​doi.​org/​10.​1016/j.​apcata.​2006.​07.​028 Jean-Marie A, Griboval-Constant A, Khodakov AY, Monflier E, Diehl F (2011) β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis Chem Commun 47(38):10767–10769 https://​doi.​org/​10.​1039/​C1CC1​3800F Jabbour K, El Hassan N, Casale S, Estephane J, El Zakhem H (2014) Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane Int J Hydrogen Energy 39(15):7780–7787 https://d​ oi.o​ rg/1​ 0.1​ 016/j.i​ jhyde​ ne.​ 2014.​03.​040 Zhi G, Guo X, Wang Y, Jin G (2011) Effect of L ­ a2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide Catal Commun 16(1):56–59 https://​doi.​org/​10.​1016/j.​ catcom.​2011.​08.​037 Mazumder J, de Lasa HI (2014) Ni catalysts for steam gasification of biomass: Effect of L ­ a2O3 loading Catal Today 237:100–110 https://​doi.​org/​10.​1016/j.​cattod.​2014.​02.​015 Papageridis KN, Siakavelas G, Charisiou ND, Avraam DG, Tzounis L, Kousi K, Goula MA (2016) Comparative study of Ni Co, 347 46 47 48 49 50 51 52 Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction Fuel Process Technol 152:156–175 https://​doi.​org/​10.​1016/j.​fuproc.​2016.​06.​024 Ayodele BV, Khan MR, Lam SS, Cheng CK (2016) Production of CO-rich hydrogen from methane dry reforming over lanthaniasupported cobalt catalyst: Kinetic and mechanistic studies Int J Hydrog Energy 41(8):4603–4615 https://​doi.​org/​10.​1016/j.​ijhyd​ ene.​2016.​01.​091 Sato S, Takahashi R, Kobune M, Gotoh H (2009) Basic properties of rare earth oxides Appl Catal A: Gen 356(1):57–63 https://d​ oi.​ org/​10.​1016/j.​apcata.​2008.​12.​019 Fouskas A, Kollia M, Kambolis A, Papadopoulou Ch, Matralis H (2014) Boron-modified Ni/Al2O3 catalysts for reduced carbon deposition during dry reforming of methane Appl Catal A: Gen 474:125–134 https://​doi.​org/​10.​1016/j.​apcata.​2013.​08.​016 Ayodele BV, Khan MR, Cheng CK (2016) Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane Int J Hydrog Energy 41(1):198–207 https://​doi.​org/​10.​1016/j.​ijhyd​ene.​2015.​10.​049 Mohanty P, Pant KK, Parikh J, Sharma DK (2011) Liquid fuel production from syngas using bifunctional CuO-CoO-Cr2O3 catalyst mixed with MFI zeolite Fuel Process Technol 92(3):600–608 https://​doi.​org/​10.​1016/j.​fuproc.​2010.​11.​017 Vo DVN, Cooper CG, Nguyen TH, Adesina AA, Bukur DB (2012) Evaluation of alumina-supported Mo carbide produced via propane carburization for the Fischer-Tropsch synthesis Fuel 93:105–116 https://​doi.​org/​10.​1016/j.​fuel.​2011.​10.​015 Charisiou ND, Tzounis L, Sebastian V, Hinder SJ, Baker MA, Polychronopoulou K, Goula MA (2019) Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3-Al2O3 catalysts during the biogas reforming reaction Appl Surf Sci 474:42–56 https://​doi.​org/​10.​ 1016/j.​apsusc.​2018.​05.​177 Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations 13

Ngày đăng: 19/05/2023, 22:47

Tài liệu cùng người dùng

Tài liệu liên quan