Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 71 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
71
Dung lượng
3,69 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ DƯƠNG MINH THIỆN ĐIỀU HƯỚNG XE TỰ HÀNH DÙNG TRÍ TUỆ NHÂN TẠO NGÀNH: KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HĨA - 8520216 SKC006074 Tp Hồ Chí Minh, tháng 04/2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ DƯƠNG MINH THIỆN ĐIỀU HƯỚNG XE TỰ HÀNH DÙNG TRÍ TUỆ NHÂN TẠO NGÀNH: KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA - 8520216 Tp Hồ Chí Minh, tháng 04/2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH LUẬN VĂN THẠC SĨ DƯƠNG MINH THIỆN ĐIỀU HƯỚNG XE TỰ HÀNH DÙNG TRÍ TUỆ NHÂN TẠO NGÀNH: KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA - 8520216 Hướng dẫn khoa học: TS LÊ MỸ HÀ Tp Hồ Chí Minh, tháng 04/2019 ii QUYẾT ĐỊNH GIAO ĐỀ TÀI i LÝ LỊCH KHOA HỌC I LÝ LỊCH SƠ LƯỢC: Họ & tên: Dương Minh Thiện Giới tính: Nam Ngày, tháng, năm sinh: 22/06/1994 Nơi sinh: Bà Rịa Vũng Tàu Quê quán: Bà Rịa Vũng Tàu Dân tộc: Kinh Địa liên lạc: 167/1/7 Võ Thị Sáu, Thị Trấn Long Điền, Huyện Long Điền, Tỉnh Bà Rịa Vũng Tàu Điện thoại liên hệ: 0909 196 940 E-mail: duongthien2206@gmail.com II QUÁ TRÌNH ĐÀO TẠO: Đại học: Hệ đào tạo: Chính qui Thời gian đào tạo: từ 09/2012 đến 12/2016 Nơi học: Trường Đại Học Sư Phạm Kỹ Thuật Thành Phố Hồ Chí Minh Ngành học: Cơng Nghệ Kỹ Thuật Điều Khiển & Tự Động Hóa Tên đồ án, luận án môn thi tốt nghiệp: Thiết Kế, Thi Cơng Lập Trình Điều Khiển Cánh Tay Máy Gắp Vật Thể Sử Dụng Thuật Toán Nhận Dạng Màu Sắc Hình Khối Ngày & nơi bảo vệ đồ án tốt nghiệp: tháng 07/2016 Trường Đại Học Sư Phạm Kỹ Thuật Thành Phố Hồ Chí Minh Người hướng dẫn: TS Nguyễn Văn Thái III Q TRÌNH CƠNG TÁC CHUN MÔN KỂ TỪ KHI TỐT NGHIỆP ĐẠI HỌC: Thời gian 9/201612/2017 10/2017- Nơi công tác Công Ty TNHH Phần Mềm FPT Đại Học Sư Phạm Kỹ Thuật Thành Phố Hồ Chí Minh ii Cơng việc đảm nhiệm Kỹ sư lập trình Học viên cao học LỜI CAM ĐOAN Tơi cam đoan cơng trình nghiên cứu tơi Các số liệu, kết nêu luận văn trung thực chưa công bố cơng trình khác Tp Hồ Chí Minh, ngày 13 tháng 04 năm 2019 (Ký tên ghi rõ họ tên) iii LỜI CẢM ƠN Trong suốt trình thực đề tài, với giúp đỡ nhiệt tình q thầy cơ, hướng dẫn mặt từ thiết kế phần cứng đến phần mềm điều khiển yếu tố định đến thành công đề tài ngày hôm Tôi xin chân thành gửi lời cảm ơn đến: Giảng viên hướng dẫn TS Lê Mỹ Hà định hướng, nhiệt tình giúp đỡ, bảo tận tình tạo điều kiện tốt cho tơi làm việc phịng thí nghiệm (ISLab) suốt q trình thực đề tài Tơi xin gửi lời cảm ơn đến toàn quý thầy cô Khoa Điện – Điện tử Bộ môn Tư Động Điều Khiển giúp đỡ nhiều q trình thực đề tài đóng góp ý kiến tạo điều kiện thuận lợi giúp đề tài hồn thiện Tơi xin gửi lời cảm ơn đến tập thể lớp cao học TĐH17B, trình làm đề tài anh chị có ý kiến thiết thực giúp đỡ việc thiết kế thi công đề tài Cuối cùng, xin gửi lời cảm ơn chân thành tới nhà trường, thầy cô, cha mẹ bạn bè động viên giúp đỡ suốt trình thực đề tài Tơi xin chân thành cảm ơn! iv TĨM TẮT Trong đề tài này, mơ hình xe tự lái dựa thị giác máy sử dụng mạng nơron học sâu máy tính Raspberry Pi đề xuất Xe tự lái lĩnh vực quan tâm nghiên cứu nhiều năm gần nhờ vào phát triển mạnh mẽ công nghệ phần cứng phần mềm liên quan đến khả tự lái hồn tồn, khơng có can thiệp người Cấp độ phương tiện tự hành đạt tương lai gần Việc sử dụng điện tử trí tuệ nhân tạo (AI) hỗ trợ người lái xe điều khiển kiểm soát phương tiện cách dễ dàng Điều đóng góp nhiều cho vấn đề giao thơng nay, có xe tự hành, khơng cịn kẹt xe, hạn chế tai nạn giao thơng người Mạng nơron tích chập (CNN) chứng minh có hiệu suất đáng kể nhiều toán nhận dạng điều khiển so với kỹ thuật khác thời gian gần Những yếu tố định kết ấn tượng khả học hàng triệu thông số sử dụng lượng lớn liệu gán nhãn Ở đây, tác giả tập trung vào việc tìm kiếm model trực tiếp ánh xạ hình ảnh đầu vào đến góc lái dự đốn đầu mạng nơron học sâu Việc thực luận văn bao gồm ba việc Đầu tiên, thơng số model CNN huấn luyện cách sử dụng liệu thu thập từ xe mơ hình tỉ lệ 1/10, gắn máy tính Raspberry Pi Model B camera phía trước Dữ liệu dùng để huấn luyện mạng hình ảnh đường góc lái đồng với thời gian thu thập lúc xe lái Tiếp theo, liệu chuyển sang máy tính dùng để huấn luyện cho model điều hướng xe Cuối cùng, thực nghiệm model máy tính Raspberry để xe tự chạy mơi trường ngồi trời, xung quanh đường trịn đường số có biển báo giao thơng Kết thực nghiệm cho thấy tính hiệu mạnh mẽ model lái tự động việc giữ đường thời gian thực Tốc độ tối đa xe khoảng 5-6km/h nhiều điều kiện lái khác nhau, vạch đường có bị che khuất hay không v ABSTRACT In this thesis, a monocular vision-based self-driving car prototype using Deep Neural Network on Raspberry Pi is proposed Self-driving cars are one of the most increasing interests in recent years as the definitely developing relevant hardware and software technologies toward fully autonomous driving capability with no human intervention Level-3/4 autonomous vehicles are potentially turning into a reality in near future It involves the use of Mechatronics and Artificial Intelligence (AI) to control the vehicle, thereby taking the responsibilities of the driver, providing a more manageable control over it And a swarm of autonomous vehicles could just be the solution to our traffic problems: no traffic jam, no road accidents, no delayed journey Convolutional Neural Networks (CNNs) have been shown to achieve significant performance in various perception and control tasks in comparison to other techniques in the latest years The key factors behind these impressive results are their ability to learn millions of parameters using a large amount of labeled data In this work, we concentrate on finding a model that directly maps raw input images to a predicted steering angle as output using a deep neural network The technical contributions of this work are three-fold First, the CNN model parameters were trained by using data collected from vehicle platform built with a 1/10 scale RC car, Raspberry Pi Model B computer and front-facing camera The training data were road images paired with the time-synchronized steering angle generated by manually driving Second, the stored data is then transferred to a desktop computer and used for training the model to autonomously navigate the car Finally, road tests the model on Raspberry to drive itself in the outdoor environment around oval-shaped and 8-shaped with traffic sign lined track The experimental results demonstrate the effectiveness and robustness of autopilot model in real-time lane keeping task Vehicle’s top speed is about 5-6km/h in a wide variety of driving conditions, regardless of whether lane markings are present or not vi MỤC LỤC LÝ LỊCH KHOA HỌC i LỜI CAM ĐOAN iii LỜI CẢM ƠN iv TÓM TẮT v ABSTRACT vi MỤC LỤC vii DANH MỤC CÁC CHỮ VIẾT TẮT ix DANH MỤC CÁC BẢNG BIỂU x DANH MỤC CÁC HÌNH ẢNH VÀ BIỂU ĐỒ xi Chương 1: TỔNG QUAN 1.1 Đặt vấn đề 1.2 Mục tiêu đề tài 1.3 Giới hạn đề tài 1.4 Nội dung đề tài Chương 2: CƠ SỞ LÝ THUYẾT CỦA XE TỰ HÀNH 2.1 Giới thiệu xe tự hành 2.2 Tổng quan trí tuệ nhân tạo 2.2.1 Trí tuệ nhân tạo (Artificial Intelligence- AI) 2.2.2 Machine Learning 2.2.3 Deep Learning 12 2.3 Convolutional Neural Network (CNN) 16 2.4 Bộ điều khiển PID 25 Chương 3: THIẾT KẾ VÀ LỰA CHỌN THIẾT BỊ 27 3.1 Các thành phần phần cứng 27 3.1.1 Xe điều khiển Trophy Truck 27 3.1.2 Động Brushed Motor RC-540PH 28 3.1.3 Động RC Servo TowerPro MG946R 29 3.1.4 Waterproof Brushed ESC Controller WP-1040 29 3.1.5 Raspberry Pi Model B 30 3.1.6 Raspberry Pi Power Pack 31 vii