Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số đồng biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R Câu Kết đúng? R R sin3 x A sin x cos x = − + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x + C D sin2 x cos x = cos2 x sin x + C C sin x cos x = Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C −6 D x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 B y = −1 C y = − D y = A y = R R R R 2 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + B y = sin x A y = x−1 C y = x3 − 2x2 + 3x + D y = tan x Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = +1− B y = − ln ln 5 ln ln x x −1+ D y = + C y = ln ln 5 ln Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = D R = 21 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (−2; −1; 2) D (2; −1; −2) Câu Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−2 ; 0) C (−∞ ; −2) D (−1 ; 4) − Câu 10 Đạo hàm hàm số y = (2x + 1) tập xác định − − A (2x + 1) ln(2x + 1) B − (2x + 1) − − D − (2x + 1) C 2(2x + 1) ln(2x + 1) R R2 Câu 11 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A B −1 C D −9 Trang 1/5 Mã đề 001 Câu 12 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 12 D 27 Câu 13 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B C −7 D Câu 14 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 15 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường trịn (C) √ √ D r = A r = B r = C r = Câu 16 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 64 B 76 C 48 D 56 Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 − i C z = − i A z = −3 + i D z = + i z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 11 C D 13 A 2(1 + 2i) Câu 19 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 20 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = 2i D P = + i Câu 21 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ 34 A |z| = 34 B |z| = C |z| = 34 Câu 22 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C Câu 23 Số phức z = A Câu 24 11 A 13 + 2i + i 2−i B √ D |z| = 34 D 2017 có tổng phần thực phần ảo C -1 − 2i (1 − i)(2 + i) Phần thực số phức z = + 2−i + 3i 29 29 B C − 13 13 D D − 11 13 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ − 2i √ √ A |w| = 85 B |w| = C |w| = D |w| = 48 R3 Câu 26 Cho a x−2 dx = Giá trị tham số a thuộc khoảng sau đây? 1 A (−1; 0) B (0; ) C ( ; 1) D (1; 2) 2 Trang 2/5 Mã đề 001 R1 e−x dx B − C e − e R2 Câu 28 Tích phân I = (2x − 1) có giá trị bằng: A B C Câu 27 Tích phân e−1 A e D e D Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b].R Mệnh đề đúng? a A b f (x) = F(b) − F(a) B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a Rb D a k · f (x) = k[F(b) − F(a)] R + lnx dx(x > 0) Câu 30 Nguyên hàm x 1 A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C D x + ln2 x + C 2 Câu 31 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x) = 2x + + C B f (x)dx = 2x + + C R R √ C f (x)dx = 2x + + C D f (x)dx = √ + C 2x + R8 R4 R4 Câu 32 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R8 A [4 f (x) − 2g(x)] = −2 B f (x) = −5 R4 R8 C [ f (x) + g(x)] = 10 D f (x) = Câu R33 Mệnh đề R sau sai? A R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R B R ( f (x) + g(x)) = R f (x) + R g(x), với hàm số f (x); g(x) liên tục R C R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R z số thực Giá trị lớn Câu 34 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức M = |z + − i| √ √ C 2 D A B + z + z2 Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √2 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z2 + z3 | + 3|z3 + z1 | bao nhiêu? Trang 3/5 Mã đề 001 A Pmax √ = B Pmax √ 10 = C Pmax √ = D Pmax √ = Câu 38 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = 13 B T = C T = D T = 13 3 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 9 B ; C ; D ; +∞ A 0; 4 4 Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = C P = A P = D P = 2 z+1 số ảo Tìm |z| ? Câu 42 Cho số phức z , thỏa mãn z−1 B |z| = C |z| = D |z| = A |z| = Câu 43 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 23 29 A B C D 4 4 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 45 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = x3 + 3x2 + 6x − 4x + C y = −x3 − x2 − 5x D y = x+2 Câu 46 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (−3; 0) C (1; 5) D (−1; 1) R ax + b 2x Câu 48 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 49 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 3a3 B 6a3 C 4a3 D 12a3 Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −2x4 + 4x2 C y = −x4 + 2x2 D y = x3 − 3x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001