Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > 2e C m > e2 D m > Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (2; −1; 2) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 300 B 450 C 600 D 360 √ ′ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA lăng trụ cho là: √ =3 3a Thể tích khối √ 3 D 3a3 A 3a B a C 3a Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m ≤ C m ≥ D m < Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? π 10π A V = π B V = C V = D V = 3 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 B −6 C D A Câu Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho 2a3 a3 A B C 6a3 D 2a3 3 Câu 10 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C D 3a Câu 11 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 12 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 17 C 20 D 13 Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 √ C (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 14 Cho số phức zthỏa mãn i + trịn (C) Tính bán kính rcủa đường √ tròn (C) √ A r = B r = C r = D r = Trang 1/5 Mã đề 001 Câu 15 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −6 B −4 C −8 D −2 Câu 16 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A B −1 C D −2 Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực phần ảo 2i C Phần thực là3 phần ảo D Phần thực là−3 phần ảo −2i Câu 18 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D z2 Câu 19 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C 13 D Câu 20 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực không âm B Mô-đun số phức z số thực D Mô-đun số phức z số phức Câu 21 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z + z + C z2 + 2z + D |z|2 + 2|z| + 1 25 = + Câu 22 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B −31 C 31 D 17 Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B 21008 C −22016 D −21008 Câu 26 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? Rb A a k · f (x) = k[F(b) − F(a)] B Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Ra C b f (x) = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a R0 Câu 27 Giá trị −1 e x+1 dx A −e B − e C e D e − Trang 2/5 Mã đề 001 Câu 28 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 2 A F(x) = − (2 − e x ) B F(x) = − e x + C C F(x) = (e x + 5) D F(x) = e x + 2 2 2 Câu 29 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = 2023cos(2023x) B f (x) = −2023cos(2023x) C f (x) = cos(2023x) D f (x) = − cos(2023x) 2023 Câu 30 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = Câu 31 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (3; −1; −4) B (3; 1; 4) C (−3; −1; −4) D (−3; −1; 4) Câu 32 Biết R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy x2 + 6x + b b tính ab A ab = 12 B ab = C ab = −5 Câu 33 Tìm nguyên hàm hàm số f (x) = √ 1√ 2x + + C R + C C f (x)dx = √ 2x + A R f (x)dx = D ab = 2x + R √ B f (x)dx = 2x + + C R √ D f (x) = 2x + + C Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 35 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 √ Câu 36 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M Câu 37 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A B C D điểm P z số thực Giá trị lớn + z2 √ D 2 Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức √ phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = 13 B T = C T = D T = 13 3 Câu 39 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C |z| = D Phần thực z số âm Trang 3/5 Mã đề 001 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ D B C 2 Câu 41 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm Q C điểm S D điểm R √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| < C < |z| < D |z| > 2 2 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 3x Câu 44 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Không tồn m Câu 45 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 x x A dx =5 + C B (2x + 1) dx = + C R R e2x C e2x dx = +C D sin xdx = cos x + C √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ (4; +∞) D Bất phương trình vơ nghiệm Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 48 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 33π 32π B C D 6π A 5 Câu 49 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2a+b+c C P = 26abc D P = 2abc Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 16 10 31 11 17 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001