1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Id4 bai tap co loi giai kts

4 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 102,78 KB

Nội dung

Microsoft Word KTS Bai Tap Co Loi Giai 1 Nguyễn Trọng Luật – BM Điện Tử Khoa Điện Điện Tử ĐH Bách Khoa TP HCM 1 BÀI TẬP CÓ LỜI GIẢI – PHẦN 1 MÔN KỸ THUẬT SỐ Bộ môn Điện tử Đại Học Bách Khoa TP HCM Câu[.]

Nguyễn Trọng Luật – BM Điện Tử - Khoa Điện-Điện Tử - ĐH Bách Khoa TP HCM BÀI TẬP CÓ LỜI GIẢI – PHẦN MÔN KỸ THUẬT SỐ Bộ môn Điện tử Đại Học Bách Khoa TP.HCM Câu Cho số A, B, C hệ thống số số r, có giá trị: A = 35, B = 62, C = 141 Hãy xác định giá trị số r, ta có A + B = C Định nghĩa giá trị: A = 3r + 5, B = 6r +2, C = r2 + 4r + A + B = C  (3r + 5) + (6r + 2) = r2 + 4r +  PT bậc 2: r2 - 5r - =  r = r = - (loại) Hệ thống số : nhiên kết khơng hợp lý B = 62: số số Câu Sử dụng tiên đề định lý: a Chứng minh đẳng thức: A B + A C + B C + A B C = A C VT: A B + A C + B C + A B C = B ( A + A C) + A C + B C = B(A+C) +AC+BC ; x+xy=x+y = AB + BC + AC + BC = AB + AC + C(B+B) = AB + AC + C = AB + A + C = A ( B + 1) + C = A + C = AC : VP b Cho A B = A + B = 1, chứng minh đẳng thức A C + A B + B C = B + C VT: AC + AB + BC = (A + B) C + A B = C + AB = C + AB + AB = C + (A+A)B = B + C : VP ; A+B=1 ; AB=0 Nguyễn Trọng Luật – BM Điện Tử - Khoa Điện-Điện Tử - ĐH Bách Khoa TP HCM Câu a Cho hàm F(A, B, C) có sơ đồ logic hình vẽ Xác định biểu thức hàm F(A, B, C) A B F C Chứng minh F thực cổng logic F = (A + B) C ⊕ B C = ((A + B) C) (B C) + ((A + B) C) (B C) = (A + B) B C + ((A + B) + C) (B + C) = A B C + B C + (A B + C) ( B + C) = B C (A + 1) + A B + B C + A BC + C = B C + A B + C (B + A B + 1) = AB+BC+C = AB+B+C = A + B +C b : Cổng OR Cho hàm F (A, B, C), G (A, B, C), H (A, B, C) có quan hệ logic với nhau: F = G ⊕ H Với hàm F (A, B, C) = ∏ (0, 2, 5) G (A, B, C)= ∑ (0, 1, 5, 7) Hãy xác định dạng ∑ ∏ hàm H (A, B, C) (1,0 điểm) A 0 0 1 1 F=G⊕ H =GH + GH = G⊕ H  F = G giống H F = G khác H B 0 1 0 1 C 1 1 F 1 1 G  H 1 1 0 0 0 1  H (A, B, C) = ∑ (1, 2, 7) = ∏ (0, 3, 4, 5, 6) Câu Rút gọn hàm sau bìa Karnaugh (chú thích liên kết) a F1 (W, X, Y, Z) = ∑ (3, 4, 11, 12) theo dạng P.O.S (tích tổng) F1 (X + Y) WX YZ 00 00 01 (X + Z) (Y + Z) 11 10 01 11 10 F1 = ( X + Y ) ( X + Z ) ( Y + Z ) 0 0 0 0 Hoặc F1 = ( X + Z ) ( Y + Z ) ( X + Y ) Nguyễn Trọng Luật – BM Điện Tử - Khoa Điện-Điện Tử - ĐH Bách Khoa TP HCM b F2 (A, B, C, D, E) = ∑ (1, 3, 5, 6, 7, 8, 12, 17, 18, 19, 21, 22, 24) + d (2, 9, 10, 11, 13, 16, 23, 28, 29) A BC DE F2 00 BDE BE BD 00 01 01 1 11 1 10 X 11 10 10 11 1 X X 01 X 00 X X 1 X X X 1 F2 = B D E + B D + B E c Thực hàm F2 rút gọn câu b IC Decoder 74138 cổng logic F2 (B, D, E) = B D E + B D + B E IC 74138 = ∑( 1, 2, 3, 4) Câu B D E C (MSB) B A (LSB) 0 G1 G2A G2B A 0 0 Chỉ sử dụng MUX → 1, thực MUX 10 → có bảng hoạt động: Sắp xếp lại bảng hoạt động: A 0 0 0 0 1 D 0 0 1 1 B C 0 1 1 0 1 1 0 0 F IN0 IN2 IN4 IN6 IN1 IN3 IN5 IN7 IN8 IN9 Ngõ vào IN8 IN9 chọn phụ thuộc vào A D B 0 0 C 0 1 D 1 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 F IN0 IN1 IN2 IN3 IN4 F2 A 0 1 B 1 0 C 1 0 D 1 F IN5 IN6 IN7 IN8 IN9 MUX  D0 D1 D2 D3 IN0 IN2 IN4 IN6 Y MUX  S0 (lsb) S1 C B MUX  D0 D1 D2 D3 IN1 IN3 IN5 IN7 S0 (lsb) S1 C B IN8 IN9 Y D A D0 D1 D2 D3 S0 (lsb) S1 Y F Nguyễn Trọng Luật – BM Điện Tử - Khoa Điện-Điện Tử - ĐH Bách Khoa TP HCM Câu Một hàng ghế gồm ghế xếp theo sơ đồ hình vẽ: G1 G2 G3 G4 Nếu ghế có người ngồi Gi = 1, ngược lại cịn trống Gi = (i = 1, 2, 3, 4) Hàm F (G1, G2, G3, G4) có giá trị có ghế kề cịn trống hàng Hãy thực hàm F cổng NOR ngõ vào Lập bảng hoạt động: G1 0 0 0 0 1 1 1 1 G2 0 0 1 1 0 0 1 1 G3 0 1 0 1 0 1 0 1 G4 1 1 1 1 F 1 1 0 1 0 0 G1 G2 F G1G2 G3G4 00 01 11 10 00 1 1 01 0 11 0 10 0 G3 G4 G2 G3 F = G1 G2 + G2 G3 + G3 G4 = G1 + G2 + G2 + G3 + G3 + G4 G1 F G2 G3 G4

Ngày đăng: 08/04/2023, 06:36

w