Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm số y = xe−x + mx đồng biến t[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m ≥ e−2 B m > e2 C m > 2e D m > −x Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; −1; 2) D (−2; 1; 2) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C 4πR3 D πR3 A πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh √ 2 A 2πRl B πRl C π l − R D 2π l2 − R2 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = −u | = √3 A | u | = B | u | = C |→ D |→ Câu Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A a B C D 2a 2 Câu 10 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −1 B −2 C D √ Câu 11 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 3; 3, 5)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 7; 3, 9)· Câu 12 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−2 ; 0) C (−1 ; 4) D (−∞ ; −2) Câu 13 Tính đạo hàm hàm số y = x A y′ = x ln B y′ = x C y′ = x.5 x−1 D y′ = 5x ln Trang 1/5 Mã đề 001 Câu 14 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 B C D A 6 Câu 15 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 A B C 6a3 D 2a3 3 Câu 16 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón A S = πa2 B S = πa2 C S = πa2 D S = πa2 4 4 4k−2 4k ∗ Câu 17 Cho A = + i + i + · · · + i + i , k ∈ N Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki − 2i (1 − i)(2 + i) + Câu 18 Phần thực số phức z = 2−i + 3i 11 29 29 11 B C − D A − 13 13 13 13 + 2i + i2017 Câu 19 Số phức z = có tổng phần thực phần ảo 2−i A B -1 C D Câu 20 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 21 Với số phức z, ta có |z + 1|2 A z · z + z + z + B |z|2 + 2|z| + C z2 + 2z + Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương B Mô-đun số phức z số phức D Mô-đun số phức z số thực D z + z + Câu 23 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i B C 29 D 13 A 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = 85 D |w| = z2 Câu 25 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B C D 11 2x + Câu 26 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 2 A y = − B y = − C y = D y = 3 3 Câu 27 Cho số phức z = + 9i, phần thực số phức z2 A B −77 C 85 D 36 Câu 28 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = πxπ−1 D y′ = π−1 x π Trang 2/5 Mã đề 001 Câu 29 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16 16π B C D A 9 15 15 Câu 30 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 A y′ = B y′ = C y′ = − x xln3 xln3 D y′ = x Câu 31 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (1; 2; −3) B (−1; −2; −3) C (1; −2; 3) D (−1; 2; 3) Câu 32 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 45◦ C 90◦ D 30◦ Câu 33 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (3; +∞) C (−∞; 1) D (1; 3) = Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ B A C D √ 2 Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = |z|2 − A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − Câu 37 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B ≤ |z| ≤ C |z| < D |z| > 2 2 √ Câu 40 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B 2 C a + b + c − ab − bc − ca D a + b + c √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Trang 3/5 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? ! ! ! ! 1 9 A 0; B ; C ; D ; +∞ 4 4 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − Câu 43 Chọn mệnh đề mệnh đề sau: R R A sin xdx = cos x + C B x dx =5 x + C C R e2x e dx = +C 2x D R (2x + 1)3 (2x + 1) dx = + C Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 9a3 C 3a3 D 4a3 A 6a3 Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 12a3 C 3a3 D 6a3 √ Câu 46 Tính đạo hàm hàm số y = log4 x2 − A y′ = x 2(x2 − 1) ln B y′ = x (x2 − 1) ln C y′ = x (x2 − 1)log4 e D y′ = √ x2 − ln Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 49 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRh + πR2 C S = 2πRl + 2πR2 D S = πRl + 2πR2 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001