Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 21 8 B I = 20 7 C I = 60 28 D I = 45 28 C[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính I = R1 √3 7x + 1dx A I = 21 B I = 20 C I = 60 28 D I = 45 28 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C D 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong khơng gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 6; 0) C (−2; 0; 0) D (0; 2; 0) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R C sin2 x cos x = cos2 x sin x + C Câu Hàm số sau đồng biến R? A y = tan x C y = x4 + 3x2 + sin3 x + C R sin3 x D sin2 x cos x = + C B R sin2 x cos x = − √ √ B y = x2 + x + − x2 − x + D y = x2 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 6πR3 C 4πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) A C(8; ; 19) Câu Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A −1 B −7 C D − → Câu 10 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 60◦ B 30◦ C 45◦ D 90◦ Câu 11 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = + ty = tz = − t B x = − ty = tz = + t C x = + ty = tz = + t D x = + 2ty = 2tz = + t Trang 1/5 Mã đề 001 Câu 12 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 A 2a3 B C 6a3 D 3 Câu 13 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2019 C 2020 D 2021 Câu 14 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D Câu 15 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 12 C 21 D 27 Câu 16 Đường thẳng y = tiệm cận ngang đồ thị đây? 1+x 2x − 2 −2x + A y = B y = C y = D y = − 2x x+2 x+1 x−2 (1 + i)(2 + i) (1 − i)(2 − i) Câu 17 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = z C z số ảo D z = z Câu 18 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 19 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = −7 − 7i D w = + 7i z2 Câu 20 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 13 C D A 11 Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 25 1 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B −31 C 31 D 17 Câu 22 Cho số phức z thỏa A −17 Câu 23 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B M(2; −3) C N(2; 3) D Q(−2; −3) Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = + i C z = − i D z = −3 − i Câu 26 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 A a B a C a D 2a3 Trang 2/5 Mã đề 001 Câu 27 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (0; −2) B (2; 0) C (−2; 0) D (0; 2) Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d = C d < R D d > R Câu 29 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πr2 l C πrl D πrl2 3 Câu 30 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; 2; 3) B (1; 2; −3) C (−1; −2; −3) D (1; −2; 3) Câu 31 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; −6) C (7; 6) D (6; 7) Câu 32 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (1; 0) D (−1; 2) Câu 33 Có số nguyên x thỏa mãn log3 A 184 B 92 x2 − 16 x2 − 16 < log7 ? 343 27 C 193 D 186 Câu 34 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C −22016 D 21008 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 B P = (|z| − 4)2 C P = (|z| − 2)2 D P = |z|2 − A P = |z|2 − √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 2z − i Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≥ C |A| < D |A| ≤ = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 A 0; B ; +∞ C ; D ; 4 4 Câu 38 Cho số phức z thỏa mãn (3 − 4i)z − Câu 39 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = √ Câu 40 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| < C |z| > D < |z| < 2 2 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 A z số thực Tính giá trị biểu + z2 √ B C D Câu 42 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 43 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 44 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 3a 30 A B C D 2 10 Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 47 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 3a3 C 4a3 D 6a3 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = − 2t x = −1 + 2t x = + 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t A B C D z = − 5t z = + 5t z = −4 − 5t z = − 5t d Câu 49 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C 2a D a Câu 50 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 6a3 B 12a3 C 4a3 D 3a3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001