1. Trang chủ
  2. » Tất cả

Đề luyện thi thpt môn toán (529)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 125,72 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Số nghiệm của phương trình 9x + 5 3x − 6 = 0 là A 1 B 4 C 0 D 2 Câu 2 Vớ[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = −15 C m = D m = 13 √ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối√lăng trụ cho là: A 3a3 B a3 C 3a3 D 3a3 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H4) C (H1) D (H2) Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x4 + 3x2 + B y = x2 D y = cos x Câu R6 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C R B R sin x = − cos x + C D e x = e x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; −1; 2) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C D 3a z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 10 Cho số phức zthỏa mãn i + tròn (C) √ Tính bán kính rcủa đường trịn (C) √ A r = B r = C r = D r = Câu 11 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho nghịch biến khoảng (1; 4) D Hàm số cho đồng biến khoảng (1; 4) − → Câu 12 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 90 C 30◦ D 45◦ Trang 1/5 Mã đề 001 Câu 13 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 − 12i C w = + 12i D w = −8 + 12i Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) cắt mặt cầu (S ) B (P) qua tâm mặt cầu (S ) C (P) không cắt mặt cầu (S ) D (P) tiếp xúc mặt cầu (S ) y−6 z+2 x−2 = = Câu 15 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng d2 : −2 cách từ điểm M(1; 1; 1) đến (P) √ A 10 D √ B √ C √ 10 53 Câu 16 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = −21009 C (1 + i)2018 = 21009 D (1 + i)2018 = 21009 i Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 19 Với số phức z, ta có |z + 1|2 B z · z + z + z + A z + z + C z2 + 2z + D |z|2 + 2|z| + Câu 20 Cho hai √ √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = 13 Câu 21 √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i √ Cho số phức z thỏa mãn A 29 B C D 13 − 2i (1 − i)(2 + i) Câu 22 Phần thực số phức z = + 2−i + 3i 29 11 29 11 A B C − D − 13 13 13 13 z2 Câu 23 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 13 C 11 D Câu 24 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki Câu 25 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 2i C −3 − 10i D 11 + 2i 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 27 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 26 Cho khối nón có đỉnh S , chiều cao thể tích Trang 2/5 Mã đề 001 Câu 28 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B ln C ln D lna x2 − 16 x2 − 16 < log7 ? Câu 29 Có số nguyên x thỏa mãn log3 343 27 A 92 B 184 C 186 D 193 Câu 30 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d = C d < R D d > R Câu 31 Cho số phức z = + 9i, phần thực số phức z2 A 36 B 85 C −77 D Câu 32 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; 2) C (−∞; 1) D (1; +∞) Câu 33 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 89 B 49 C 90 D 48 Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = C A = −1 D A = Câu 35 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 36 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −22016 B 22016 C 21008 D −21008 Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D = Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B C D 10 A 15 + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Trang 3/5 Mã đề 001 Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 44 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + n 2mn + n + D log2 2250 = n 2mn + n + n 2mn + 2n + C log2 2250 = m B log2 2250 = A log2 2250 = Câu 45 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 30 3a A B C D 2 10 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (3; 5) D (1; 5) Câu 48 Chọn mệnh đề mệnh đề sau: A R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx C R3 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx 1 D |x2 − 2x|dx = − R2 (x2 − 2x)dx + R3 (x2 − 2x)dx d Câu 49 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − A y′ = 2(x2 x − 1) ln B y′ = (x2 x − 1)log4 e C y′ = (x2 x − 1) ln D y′ = √ x2 − ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 17:54

w