Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích củ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: 3a2 b a2 3b2 − a2 B VS ABC = A VS ABC = 12 12 q √ √ a2 b2 − 3a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (2; −1; −2) C (−2; 1; 2) D (−2; −1; 2) Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π D A 3π B 3π C √ 3 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? π 10π A V = B V = π C V = D V = 3 R1 √3 Câu Tính I = 7x + 1dx 60 A I = 28 B I = 21 C I = 45 28 D I = 20 đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m > C m ≤ D m ≥ m R dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + 2m + m+1 m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 2m + m+1 Câu Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A 3a B C D Câu 10 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 76 C 64 D 48 Câu 11 Tính đạo hàm hàm số y = x A y′ = x B y′ = x ln C y′ = x.5 x−1 D y′ = 5x ln Trang 1/5 Mã đề 001 1 Câu 12 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 Có giá trị nguyên D Câu 13 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 18 B 13 C 17 D 20 Câu 14 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 22π 512π 7π A V = B V = C V = D V = 15 Câu 15 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 2a3 B a3 C 6a2 D 6a3 √ √ a Câu 16 Cho hình chóp S ABCD có cạnh đáy a đường cao S H Tính góc mặt bên (S DC) mặt đáy A 60o B 45o C 90o D 30o (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 18 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = z D z số ảo B |z| = C z = z Câu 19 Tính √ mô-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 B |z| = 34 C |z| = D |z| = 34 A |z| = 3 Câu 20 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −22016 C −21008 + D −21008 4(−3 + i) (3 − i)2 Câu 21 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = 85 C |w| = 48 D |w| = Câu 22 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C −3 D !2016 !2018 1+i 1−i + Câu 23 Số phức z = 1−i 1+i A −2 B C + i D 25 1 Câu 24 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B 17 C −17 D −31 Câu 25 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực phần ảo 2i C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo Câu 26 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Trang 2/5 Mã đề 001 R dx = F(x) + C Khẳng định đúng? x C F ′ (x) = − D F ′ (x) = A F ′ (x) = lnx B F ′ (x) = x x x ′ ′ ′ Câu 28 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B a C 2a D a Câu 29 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B C D 12 ax + b có đồ thị đường cong hình bên Câu 30 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (0; 2) C (2; 0) D (−2; 0) Câu 27 Cho Câu 31 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B C D −2 Câu 32 Với a số thực dương tùy ý, ln(3a) − ln(2a) C ln D lna A ln(6a2 ) B ln Câu 33 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 90 C 49 D 89 √ điểm A hình vẽ bên điểm Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm P Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm R C điểm Q D điểm S √ √ √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 √ Câu 37 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B |z| > C ≤ |z| ≤ D |z| < 2 2 Câu 38 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = B P = 2016 C P = −2016 D max T = Câu 39 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = D A = + i Trang 3/5 Mã đề 001 Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu thức P = |z1 | + |z2 | √ √ √ √ A P = 34 + B P = 26 C P = + D P = Câu 42 Cho số phức z , thỏa mãn z+1 số ảo Tìm |z| ? z−1 B |z| = A |z| = C |z| = D |z| = Câu 43 Hàm số hàm số sau đồng biến R 4x + A y = B y = x4 + 3x2 x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x Câu 44 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = C R = D R = 15 Câu 45 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B C ln D − ln Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 9a3 C 6a3 D 4a3 A 3a3 Câu 47 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 250π 500π 125π A B C D 9 Câu 48 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRh + πR2 C S = πRl + πR2 D S = πRl + 2πR2 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 6π C 10π D 12π Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 a 15 3a A B C D 10 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001