Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho lăng trụ đều ABC A′B′C′ có tất cả các cạnh đều bằng a Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 5a 3a a A √ B C D √ 5 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C D A −6 B Câu 3.√ Cho √hai số thực a, bthỏa mãn√ a > b > Kết luận√nào sau√ sai? √ A a > b C a− < b− B a < b D ea > eb Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m ≥ e−2 B m > e2 C m > D m > 2e Câu Bất đẳng thức sau đúng? −e A 3√ > 2−e √ π e C ( + 1) > ( + 1) √ √ e π B ( − 1) < ( − 1) D 3π < 2π Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (2; −1; 2) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a B 2a C D a A 2 x−2 y x−1 Câu 10 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 11 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; −2; −1) −n = (1; 2; 3) A → B → C → D → Câu 12 Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − −2x + 1+x A y = B y = C y = D y = x+1 x+2 x−2 − 2x Câu 13 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 − 12i C w = + 12i D w = −8 + 12i Trang 1/5 Mã đề 001 Câu 14 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 13 B 17 C 20 D 18 R6 R6 R6 Câu 15 Nếu f (x) = g(x) = −4 ( f (x) + g(x)) A −6 1 B C D −2 Câu 16 Đường cong hình bên đồ thị hàm số bốn hàm số liệt kê bốn phương án Hỏi hàm số hàm số nào? A B C D Câu 17 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = + 7i D w = −7 − 7i Câu 18 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z + z + D z · z + z + z + C z2 + 2z + Câu 19 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 − 2i C 11 + 2i D −3 + 2i Câu 20 2i, z2 = − i Giá trị biểu √ Cho số phức z1 = + √ √ thức |z1 + z1 z2 | √ A 130 B 30 C 10 D 10 1 25 = + Khi phần ảo z bao nhiêu? Câu 21 Cho số phức z thỏa z + i (2 − i)2 A −17 B 31 C 17 D −31 Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −21008 + D −22016 Câu 23 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ √ 34 34 B |z| = C |z| = 34 D |z| = 34 A |z| = 3 Câu 24 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 25 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 Câu 26 Phần ảo số phức z = − 3i A −3 B −2 C Câu 27 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (2; 3) C (12; +∞) D D D (3; +∞) Câu 28 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d = C d = R D d < R Câu 29 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 30◦ D 60◦ Câu 30 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = π−1 x π Câu 31 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Trang 2/5 Mã đề 001 Câu 32 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C 85 D Câu 33 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A 2 Câu 34 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ B C D A 13 Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 + · · · + z2017 + z2017 Tính giá trị biểu thức P = z2017 2015 + z2016 A P = B P = 2016 C P = D P = −2016 √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = B T = 13 C T = 13 D T = 3 Câu 38 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i D |z| = A |z| = B |z| = C |z| = 2z − i Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| ≤ C |A| > D |A| ≥ Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 B ; +∞ C ; D ; A 0; 4 4 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − z số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ → − → − → − → C u + v = (1; 13; 16) D u + 3−v = (1; 14; 15) π R2 Câu 44 Biết sin 2xdx = ea Khi giá trị a là: Câu 42 Cho số phức z thỏa mãn z số thực ω = A − ln B C ln D Trang 3/5 Mã đề 001 √ 2x − x2 + Câu 45 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+2b+3c C P = 26abc D P = 2a+b+c Câu 47 Chọn mệnh đề mệnh đề sau: A R (2x + 1)2 dx = C R e2x dx = (2x + 1)3 + C e2x +C B R x dx =5 x + C D R sin xdx = cos x + C Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 49 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 R3 R3 R2 R3 (x2 − 2x)dx |x − 2x|dx = (x − 2x)dx − 2 R3 (x2 − 2x)dx R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx D (x2 − 2x)dx + 1 C R2 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx 1 Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 23 C 29 D 25 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001