Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = 3 2 , ((ℵ) có[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B 3π C 3π D √ 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ C R = D R = 21 A R = B R = 29 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = C y = −1 D y = − R R R R 2 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ D −1 < m < Câu Hàm số sau đồng biến R? √ √ A y = x2 B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = tan x Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+1 m+2 2m + m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( 2m + m+2 m+1 m+2 x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = ) Tìm F( √ cos2 x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích B πR3 C 2πR3 D 4πR3 A 6πR3 Câu Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 14 220 55 x−2 y x−1 Câu 10 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Câu 11 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −2 B C D −3 R Câu 12 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = cos 3x B f (x) = C f (x) = −3 cos 3x D f (x) = − 3 Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B J(−3; 2; 7) C K(3; 0; 15) D H(−2; −1; 3) Câu 14 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2022 B 2021 C 2020 D 2019 Câu 15 Cho hàm số y = f (x) hàm số bậc có đồ thị hình vẽ Giá trị cực tiểu hàm số cho A −1 B C D −2 Câu 16 Có số nguyên ysao cho ứng với số nguyên ycó tối đa 100 số nguyên xthỏa mãn 3y−2x ≥ log5 (x + y2 )? A 20 B 13 C 17 D 18 Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = −21009 i C (1 + i)2018 = 21009 i D (1 + i)2018 = 21009 Câu 18 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + √ B 30 C 130 D 10 A 10 Câu 19 Với số phức z, ta có |z + 1|2 B |z|2 + 2|z| + C z2 + 2z + A z + z + (1 + i)(2 − i) Câu 20 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D z · z + z + z + D |z| = Câu 21 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B −9 C D 10 Câu 22 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 Câu 23 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C Khơng có số D Câu 24 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B −1 ≤ m ≤ C m ≥ m ≤ D ≤ m ≤ Câu 25 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 10i C −3 − 2i √ D −3 + 2i Câu 26 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πrl C πr2 l D πrl2 3 Câu 27 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = xπ−1 C y′ = πxπ−1 π D y′ = πxπ Câu 28 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (6; 7) C (7; 6) D (−6; 7) Trang 2/5 Mã đề 001 Câu 29 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D Câu 30 Cho số phức z = + 9i, phần thực số phức z2 A −77 B 85 C D 36 Câu 31 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 Câu 32 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 225 D 105 Câu 33 Phần ảo số phức z = − 3i A B C −3 D −2 √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| < B |z| > C < |z| < D ≤ |z| ≤ 2 2 + z + z2 Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B z số ảo C |z| = D Phần thực z số âm Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 B T = 13 C T = A T = 13 D T = 3 Câu 38 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = B P = 2016 C max T = D P = −2016 √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c 2 C a + b + c + ab + bc + ca D Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 z Câu 41 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C 2 D 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≤ B |A| < C |A| ≥ D |A| > Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Trang 3/5 Mã đề 001 Câu 44 Chọn mệnh đề mệnh đề sau: A R (2x + 1)3 (2x + 1) dx = + C B R e2x dx = C R sin xdx = cos x + C D R x dx =5 x + C e2x +C Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D Câu 46 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (3; 5) C (−1; 1) r Câu 47 Tìm tập xác định D hàm số y = log2 D (1; 5) 3x + x−1 A D = (−∞; 0) B D = (−1; 4) C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 48 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 3a 30 a 15 B C D A 10 Câu 50 Chọn mệnh đề mệnh đề sau: A R3 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 R3 D R3 |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx R3 R2 |x − 2x|dx = |x − 2x|dx − C 1 |x − 2x|dx = − 2 R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001