Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 2πR3 C πR3 D 6πR3 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x − 2x + 3x + D y = x2 − 2x + √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? 10π π A V = B V = C V = π D V = 3 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ D m ∈ (−1; 2) A m ≥ B m ∈ (0; 2) C −1 < m < Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = − 4t Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 3a 5a B √ C √ D A 5 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → → − → − −u | = √3 −u | = A | u | = B | u | = C |→ D |→ Câu Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 B (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 C (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 D (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 Câu 10 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −1 C D −7 R Câu 11 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = cos 3x B f (x) = − C f (x) = −3 cos 3x D f (x) = 3 Câu 12 Tập nghiệm bất phương trình 52x+3 > −1 A (−∞; −3) B R C ∅ D (−3; +∞) − → Câu 13 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 45 B 90 C 30◦ D 60◦ Trang 1/5 Mã đề 001 Câu 14 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2020 B 2022 C 2021 D 2019 √ Câu 15 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 1; 3, 3)· B (3, 7; 3, 9)· C (3, 5; 3, 7)· D (3, 3; 3, 5)· Câu 16 Cho hai số phức u, v thỏa mãn u = v = 10 3u − 4v = 50 Tìm giá trị lớn biểu thức 4u + 3v − + 6i A 30 B 60 C 50 D 40 Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ B 13 C D A 11 Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = −3 − i C z = −3 + i D z = − i !2016 !2018 1−i 1+i + Câu 20 Số phức z = 1−i 1+i A B C −2 D + i 4(−3 + i) (3 − i) Câu 21 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = B |w| = 85 C |w| = D |w| = 48 Câu 22.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ A 10 B 30 C 10 D 130 √ Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B m ≥ m ≤ −1 C ≤ m ≤ D −1 ≤ m ≤ (1 + i)(2 + i) (1 − i)(2 − i) Câu 24 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = B z = z C z số ảo D |z| = z Câu 25 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = 2i D P = + i Câu 26 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x + B x3 + − 4x C 2x3 − 4x4 D x3 − x4 + 2x 4 Câu 27 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa A πa3 B 3πa3 C πa3 D Trang 2/5 Mã đề 001 Câu 28 Đồ thị hình bên đồ thị hàm số nào? 2x + −2x + 2x + A y = B y = C y = x+1 1−x x+1 √ x− x+2 có tất tiệm cận? Câu 29 Đồ thị hàm số y = x2 − A B C D y = 2x − x−1 D √ Câu 30 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A a B C D Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vuông √ √ 3a 10 C D 3a A 6a B 3a Câu 32 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = −x4 − 2x2 − C y = x4 − 2x2 − D y = 2x4 + 4x2 + Câu 33 Cho hàm số y = x −3x Tính y′ A y′ = (x2 − 3x)5 x −3x ln C y′ = x −3x ln B y′ = (2x − 3)5 x −3x ln D y′ = (2x − 3)5 x −3x 2z − i Mệnh đề sau đúng? Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| < B |A| > C |A| ≥ D |A| ≤ 1 + z + z2 Câu 35 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm Q Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 1 A ; B ; +∞ C 0; D ; 4 4 Câu 40 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| A B √ z số thực Giá trị lớn + z2 √ C 2 D Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 43 Hàm số hàm số sau đồng biến R 4x + A y = x3 + 3x2 + 6x − B y = x+2 C y = −x3 − x2 − 5x D y = x4 + 3x2 Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 45 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −2x4 + 4x2 C y = x3 − 3x2 D y = −x4 + 2x2 + Câu 46 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích toàn phần (T ) A 8π B 10π C 12π D 6π Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 6a3 C 4a3 D 3a3 Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < − D m > m < −1 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A 6π B C D 5 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001