Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √ x, y = x, x = 2 quay qua[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? π 10π A V = π B V = C V = D V = 3 Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B log x > log y C log x > log y D loga x > loga y a a x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 450 C 300 D 360 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 5a 3a 2a a B C D √ A √ 5 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường elip B Đường tròn C Đường parabol D Đường hypebol Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (0; 6; 0) D (−2; 0; 0) Câu Tập nghiệm bất phương trình 52x+3 > −1 A ∅ B R C (−∞; −3) D (−3; +∞) Câu 10 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (0; −3) B (−1; −4) C (−3; 0) D (1; −4) z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 11 Cho số phức zthỏa mãn i + trịn (C) √ Tính bán kính rcủa đường tròn (C) √ A r = B r = C r = D r = Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B J(−3; 2; 7) C K(3; 0; 15) D H(−2; −1; 3) √ Câu 13 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 7; 3, 9)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 3; 3, 5)· Trang 1/5 Mã đề 001 Câu 14 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 15 Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A 5x5 + sin x + C B x5 − sin x + C C x5 + sin x + C D 5x5 − sin x + C Câu 16 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 6 Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 + 2i C 11 + 2i D −3 − 2i 2(1 + 2i) Câu 19 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 Câu 20 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = + i C P = D P = !2016 !2018 1+i 1−i Câu 21 Số phức z = + 1−i 1+i A −2 B C D + i + 2i + i2017 Câu 22 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D Câu 23 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức w = 6z − 25i A B 29 C D 13 z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B z số ảo C z = D |z| = z Câu 26 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 a 3a 13 3a 10 A B C D 26 13 20 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi √ là: A 3π B 8π C 4π D 2π Trang 2/5 Mã đề 001 √ Câu 28 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích √ khối chóp S ABC √ √ √ a3 a3 2a3 B C D a3 A Câu 29 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−∞; −4) ∪ (−1; +∞) C S = (−4; −1) D S = (−1; +∞) Câu 30 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ góc hai mặt phẳng √ mặt phẳng đáy Tính cơsin √ (SAC) (SBC) bằng? 2 B C D A 2 √ Câu 31 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A D B C a Câu 32 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ 2 2 2 A (x − 1) + (y + 1) + (z + 2) = B (x + 1) + (y − 1) + (z − 2) = 2 C (x + 1) + (y − 1) + (z − 2) = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 34 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i C |z| = D |z| = A |z| = B |z| = Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D Câu 37 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 38 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C D 13 Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 40 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 1 9 A ; B 0; C ; D ; +∞ 4 4 z Câu 41 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 Trang 3/5 Mã đề 001 √ A C B D √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 + ab + bc + ca C a + b + c D a2 + b2 + c2 − ab − bc − ca Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = Câu 44 Tìm tất giá trị tham số m để hàm số y = A m = B m = −1 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 14 C R = D R = 15 Câu 46 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 47 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = + C B sin xdx = cos x + C R R e2x C x dx =5 x + C D e2x dx = +C Câu 48 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 23 25 A B C D 4 4 Câu 50 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 125π 250π 500π 400π A B C D 9 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001