Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 60 28 B I = 20 7 C I = 45 28 D I = 21 8 C[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính I = R1 √3 7x + 1dx 20 45 21 60 B I = C I = D I = 28 28 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = −2 C m = −15 D m = 13 A I = Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu Cho hình√chóp S ABCcó cạnh đáy a cạnh bên√bằng b Thể tích khối chóp là: 3a2 b a2 3b2 − a2 B VS ABC = A VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3ab2 C VS ABC = D VS ABC = 12 12 ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A ab < B ac < C ad > D bc > Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (−2; 0; 0) D (0; 6; 0) Câu Số nghiệm phương trình x + 5.3 x − = A B C D − → Câu Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 30 B 60 C 90◦ D 45◦ Câu 10 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + ty = tz = + t C x = + 2ty = 2tz = + t D x = + ty = tz = − t Câu 11 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −1 C D −7 Câu 12 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−∞ ; −2) B (−1 ; 4) C (−2 ; 0) D (0 ; +∞) Câu 13 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 A P = B P = C P = D P = 55 220 14 Trang 1/5 Mã đề 001 Câu 14 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 15 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (1; 4) B Hàm số cho đồng biến khoảng (−∞; 3) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (1; 4) Câu 16 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 27 C 21 D 18 Câu 17 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 − 10i C 11 + 2i D −3 + 2i Câu 18 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A 10 B −9 C D −10 Câu 19 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = 2i D P = + i √ Câu 20 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D m ≥ m ≤ − 2i (1 − i)(2 + i) Câu 21 Phần thực số phức z = + 2−i + 3i 11 11 29 29 B C − D A − 13 13 13 13 4k−2 4k ∗ Câu 22 Cho A = + i + i + · · · + i + i , k ∈ N Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 24 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 A |z1 + z2 | = 4(−3 + i) (3 − i)2 Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = C |w| = 85 D |w| = 48 Câu 26 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 13 3a 10 a A B C D 26 13 20 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 3π C 4π D 8π Trang 2/5 Mã đề 001 Câu 28 Xác định tập tất giá trị tham số m để phương trình 2x3 + x2 − 3x − có nghiệm phân biệt 19 A S = (−2; − ) ∪ ( ; 7) B S = (−3; −1) ∪ (1; 2) 4 19 19 D S = (−2; − ) ∪ ( ; 6) C S = (−5; − ) ∪ ( ; 6) 4 4 √ x− x+2 Câu 29 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D m = − 2 Câu 30 Trong hệ tọa độ Oxyz, cho A(1; kính AB có phương trình √ 2; 3), B(−3; 0; 1) Mặt2 cầu đường 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2)2 = 24 2 C (x + 1) + (y − 1) + (z − 2) = D (x − 1)2 + (y + 1)2 + (z + 2)2 = x2 + 2x Câu 31 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A 15 B −2 C D Câu 32 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga (xy) = loga x.loga y C loga x có nghĩa với ∀x ∈ R D loga xn = log x , (x > 0, n , 0) an Câu 33 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác ABC quanh trục AB √ √ πa C 3πa3 D πa3 A πa3 B Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm P Câu 35 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D z Câu 36 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 B C D A Câu 37 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp sau đây? ! ! ! 9 A ; B 0; C ; +∞ D ; 4 4 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A B C D 2 √ √ √ 42 √ Câu 39 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Trang 3/5 Mã đề 001 Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 41 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C a2 + b2 + c2 + ab + bc + ca D Câu 43 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 44 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 45 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = x3 − 3x2 D y = −2x4 + 4x2 Câu 46 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 23 27 25 B C D A 4 4 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 6π C 12π D 8π Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001