Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B πR3 C 4πR3 D 6πR3 Câu Hàm số sau khơng có cực trị? A y = x2 C y = x4 + 3x2 + B y = cos x D y = x3 − 6x2 + 12x − Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A m < B ∀m ∈ R C −4 < m < D < m , Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m > D m ≥ Câu Số nghiệm phương trình x + 5.3 x − = A B C Câu R7 Kết đúng? A sin2 x cos x = cos2 x sin x + C R sin3 x C sin2 x cos x = − + C D sin2 x cos x = −cos2 x sin x + C R sin3 x D sin2 x cos x = + C B R Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 6; 0) D (0; 2; 0) Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π A V = B V = C V = D V = 3 Câu 10 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = Câu 11 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab) = ln a ln b B ln(ab2 ) = ln a + (ln b)2 a ln a C ln(ab2 ) = ln a + ln b D ln( ) = b ln b Câu 12 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y − 2z = C (P) : x + y + 2z = D (P) : x − y + 2z = Câu 14 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = 52 D yCD = Câu 15 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(5; 9; 5) C C(3; 7; 4) D C(1; 5; 3) Câu 16 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều√cao tứ diện √ tiếp √ π 2.a2 π 3.a2 2π 2.a B C D π 3.a2 A 3 Câu 17 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực là3 phần ảo Câu 18 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 10 B 30 C 130 D 10 − 2i (1 − i)(2 + i) + Câu 19 Phần thực số phức z = 2−i + 3i 11 11 29 29 A − B C − D 13 13 13 13 Câu 20 Những số sau vừa số thực vừa số ảo? A B Khơng có số C Chỉ có số D C.Truehỉ có số (1 + i)(2 − i) Câu 21 Mô-đun số phức z = √ √ + 3i A |z| = B |z| = C |z| = D |z| = z2 Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B 11 C 13 D Câu 23 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ 34 34 A |z| = B |z| = C |z| = 34 3 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B −3 − 2i C −3 − 10i D |z| = √ 34 D 11 + 2i Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 26 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 2 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x + y + z − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 8π C 4π D 2π Trang 2/5 Mã đề 001 Câu 28 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 2)e x + C B xe x−1 + C C xe x + C D (x − 1)e x + C √ Câu 29 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt phẳng (S CD) √ a a a 10 A B C D a Câu 30 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C −6 D x −2x +3x+1 Câu 31 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng (−∞; 1) (3; +∞) Câu 32 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−1; +∞) C S = (−4; −1) D S = (−∞; −4) ∪ (−1; +∞) Câu 33 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ B C D A √ Câu 34 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 2z − i Mệnh đề sau đúng? Câu 35 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| ≥ B |A| < C |A| > D |A| ≤ Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 D P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − A P = |z|2 − Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D √ √ √ 42 √ Câu 38 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C 10 D A Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = −2016 D P = 2016 √ Câu 41 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C D a2 + b2 + c2 + ab + bc + ca Trang 3/5 Mã đề 001 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ D C 2 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = x2 Câu 44 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 B C D A 64 128 32 √ Câu 45 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + πR2 B S = πRh + πR2 C S = πRl + 2πR2 D S = 2πRl + 2πR2 Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx Câu 48 Chọn mệnh đề mệnh đề sau: R R e2x x x 2x +C A dx =5 + C B e dx = R R (2x + 1)3 C (2x + 1)2 dx = + C D sin xdx = cos x + C Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 15 a3 15 a3 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001