Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Kết luận nào sau đây về tính đơn điệu của hàm số y = 1 x là đúng? A Hàm[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 đúng? x B Hàm số nghịch biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) C Hàm số đồng biến R Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 5a 3a 2a B C √ A D √ 5 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (−2; 0; 0) C (0; 2; 0) D (0; 6; 0) Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ∈ (0; 2) C m ≥ D −1 < m < Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 m+2 2m + ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 m+1 m+2 2m + Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = tan x B y = sin x 3x + C y = x3 − 2x2 + 3x + D y = x−1 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 C y = −1 D y = A y = B y = − R R R R 2 ′ Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 10 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−∞; −3) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số nghịch biến khoảng (1; +∞) Câu 11 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m > C m ≥ D m ≥ −1 Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 4π B 3π C 2π D π Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(5; 9; 5) C C(3; 7; 4) D C(−3; 1; 1) Câu 14 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu 15 Đạo hàm hàm số y = log √2 3x − là: D y′ = 3x − ln √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 B C D a 15 A − 2i (1 − i)(2 + i) Câu 17 Phần thực số phức z = + 2−i + 3i 29 11 11 29 A − B C − D 13 13 13 13 2017 + 2i + i Câu 18 Số phức z = có tổng phần thực phần ảo 2−i A -1 B C D A y′ = (3x − 1) ln B y′ = (3x − 1) ln 2 C y′ = 3x − ln Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 20 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = + i D P = 2i Câu 21 biểu thức |z1 + z1 z2 | √ √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị √ A 10 B 10 C 30 D 130 Câu 22 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −7 C D −3 Câu 23 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực là3 phần ảo C Phần thực là−3 phần ảo −2i D Phần thực −3 phần ảo là−2 (1 + i)(2 − i) Câu 24 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Trang 2/5 Mã đề 001 x2 + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B 15 C D Câu 27 Xác định tập tất giá trị tham số m để phương trình 2x3 + x2 − 3x − có nghiệm phân biệt 19 19 A S = (−5; − ) ∪ ( ; 6) B S = (−2; − ) ∪ ( ; 6) 4 4 19 C S = (−2; − ) ∪ ( ; 7) D S = (−3; −1) ∪ (1; 2) 4 m = − 2 Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 2,075 C 8,9 D 11 2x − đạt giá trị lớn đoạn [1; 3] Câu 29 Với giá trị tham số m hàm số y = x + m2 : √ D m = ±2 A m = ±1 B m = ±3 C m = ± Câu 30 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ π− 3 2π − 3 2π − A B C D 12 12 √ Câu 31 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 B C D A a x −2x +3x+1 Câu 32 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) D Hàm số đồng biến khoảng (−∞; 1) (3; +∞) Câu 33 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B (3; +∞) C (1; +∞) D [1; +∞) Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ B C √ D A 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 2)2 D P = (|z| − 4)2 Trang 3/5 Mã đề 001 √ 2 Mệnh đề Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 C < |z| < 2 D + z + z2 số thực − z + z2 < |z| < 2 Câu 38 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −22016 C −21008 D 21008 Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B C 10 D 15 Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 41 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| C P = −2016 D P = 2016 A P = B max T = 2z − i Câu 42 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| ≤ C |A| ≥ D |A| > Câu 43 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B −3 ≤ m ≤ C m > −2 D −4 ≤ m ≤ −1 π cos x F(− ) = π Khi giá trị Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C D ln + 5 5 √ 2x − x2 + Câu 45 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx − 1 R2 R3 (x2 − 2x)dx R3 R3 |x2 − 2x|dx = (x2 − 2x)dx + R3 (x2 − 2x)dx (x2 − 2x)dx Trang 4/5 Mã đề 001 d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) A 2a B a √ C a √ D a Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α A √ 15 B 10 √ C √ 15 D Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Trang 5/5 Mã đề 001