Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u (2;−2; 1), kết luận nào sau[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 −u (2; −2; 1), kết luận sau đúng? Câu Trong hệ tọa độ Oxyz cho → √ không gian với→ → − − −u | = −u | = A | u | = B | u | = C |→ D |→ x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = −1 C y = − D y = R R R R 2 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường hypebol D Đường elip Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = −15 C m = 13 D m = Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (0; 2) B m ∈ (−1; 2) C m ≥ D −1 < m < Câu R6 Công thức sai? R A R cos x = sin x + C B R a x = a x ln a + C C e x = e x + C D sin x = − cos x + C Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 A 4πR3 B πR3 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − 2 C y = x − 2x + D y = x3 D πR3 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 A (m ) B 3(m ) C (m ) D (m2 ) Câu 10 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [22; +∞) D [ ; 2] [22; +∞) A ( ; 2] [22; +∞) B ( ; +∞) 4 √ sin 2x Câu 11 R bằng? √ Giá trị lớn hàm số y = ( π) A π B π C D Câu 12 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 13 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (1; +∞) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (−3; 1) Trang 1/5 Mã đề 001 Câu 14 Đạo hàm hàm số y = A y′ = (3x − 1) ln log √ 3x − là: B y′ = 3x − ln C y′ = (3x − 1) ln 2 D y′ = 3x − ln Câu 15 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = −2 C yCD = D yCD = 52 √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a a 15 A B C D a 15 3 Câu 17 Với số phức z, ta có |z + 1| A |z|2 + 2|z| + B z · z + z + z + C z + z + D z2 + 2z + Câu 18 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 20 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = −3 − i C z = − i D z = + i 2(1 + 2i) Câu 21 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D z2 Câu 22 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ D A 13 B C 11 Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số phức D Mô-đun số phức z số thực không âm Câu 24 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −22016 B 21008 C −21008 + D −21008 Câu 25 Tính mơ-đun số phức √ z thỏa mãn z(2 − i) + 13i = √ √ 34 34 A |z| = 34 B |z| = C |z| = 34 D |z| = 3 2x − Câu 26 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ±1 C m = ± D m = ±3 x −2x +3x+1 Câu 27 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) Trang 2/5 Mã đề 001 C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) Câu 28 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b D √ B √ C √ A √ 3π 3π 2π 2π Câu 29 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S A 50 5dm2 B 75dm2 C 106, 25dm2 D 125dm2 Re lnn x dx, (n > 1) Câu 30 Tính tích phân I = x 1 1 A I = B I = n + C I = D I = n n−1 n+1 m Câu 31 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 19 B S = (−5; − ) ∪ ( ; 6) A S = (−2; − ) ∪ ( ; 7) 4 4 19 C S = (−2; − ) ∪ ( ; 6) D S = (−3; −1) ∪ (1; 2) 4 Câu 32 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = −x4 − 2x2 − C y = x4 − 2x2 − D y = 2x4 + 4x2 + Câu 33 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x C y′ = (2x − 3)5 x −3x ln B y′ = x −3x ln D y′ = (x2 − 3x)5 x −3x ln √ 2 Mệnh đề Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 35 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 21008 C 22016 D −22016 Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D Câu 37 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D √ Câu 38 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B C a + b + c D a2 + b2 + c2 + ab + bc + ca z+1 Câu 39 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Trang 3/5 Mã đề 001 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ D √ A B C 2 Câu 41 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? B C A 2 D Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C D 15 Câu 43 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 C 12a3 D 6a3 Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − C R3 |x − 2x|dx = − D R3 R3 R2 (x − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx (x2 − 2x)dx Câu 45 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B C −4 D −2 Câu 46 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 32 B 128 C x2 )=8 D 64 Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng A a B a C 2a D a Câu 49 Hàm số hàm số sau đồng biến R 4x + A y = −x3 − x2 − 5x B y = x+2 C y = x + 3x D y = x + 3x2 + 6x − x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 50 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001