Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B 6πR3 C 2πR3 D πR3 Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+1 2m + m+2 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 m+2 2m + m+1 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = x − 2x + 3x + D y = tan x Câu Kết đúng? R sin3 x + C A sin2 x cos x = − R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C sin3 x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 21 D R = 29 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → −u | = −u | = → − → − C |→ D |→ A | u | = B | u | = D R sin2 x cos x = Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; 1; 2) Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(−3; 1; 1) C C(3; 7; 4) D C(1; 5; 3) Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = R Câu 12 Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 14 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 B V = C V = D V = A V = 5 √ Câu √ 15 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 1200 C 600 D 300 Câu 16 Đạo hàm hàm số y = log √2 3x − là: 6 2 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln !2016 !2018 1+i 1−i Câu 17 Số phức z = + 1−i 1+i A B −2 C D + i Câu 18 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B 21008 C −21008 + D −22016 Câu 19 Với số phức z, ta có |z + 1|2 A z + z + B z2 + 2z + C |z|2 + 2|z| + D z · z + z + z + Câu 20 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi√đó mơ-đun số phức√w = 6z − 25i D 29 A 13 B C Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C N(2; 3) D P(−2; 3) − 2i (1 − i)(2 + i) + Câu 22 Phần thực số phức z = 2−i + 3i 11 11 29 29 A − B C − D 13 13 13 13 Câu 23 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ √ 34 34 A |z| = 34 B |z| = C |z| = 34 D |z| = 3 Câu 24 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 25 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm B Mô-đun số phức z số phức C Mô-đun số phức z số thực D Mô-đun số phức z số thực dương x −2x +3x+1 Câu 26 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số đồng biến khoảng (−∞; 1) (3; +∞) B Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) C Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) D Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) x2 + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A −2 B 15 C D Trang 2/5 Mã đề 001 Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga (xy) = loga x.loga y C loga x có nghĩa với ∀x ∈ R D loga xn = log x , (x > 0, n , 0) an Câu 29 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 49m C 48m D 50m Câu 30 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √h √ √ √ 2π − 3 2π − π− A B C D 12 12 Câu 31 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ sin góc MN và√mặt phẳng (S BD) √ MN mặt phẳng (ABCD) 60 Tính 10 B C D A 5 Câu 32 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ −2 B m ≤ C m < −3 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch D m ≥ −8 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 2; 6) C (1; −2; 7) D (−2; 3; 5) Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B ≤ |z| ≤ C < |z| < D |z| < 2 2 2z − i Câu 36 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| < B |A| > C |A| ≥ D |A| ≤ √ Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức M = |z + − i| √ √ A B 2 C D Câu 39 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = 2016 C P = D max T = Trang 3/5 Mã đề 001 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A √ C D B 2 Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z √2 | √ √ A P = 34 + B P = 26 C P = D P = + Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm P C điểm S r Câu 43 Tìm tập xác định D hàm số y = D điểm Q 3x + x−1 B D = (−1; 4) D D = (1; +∞) log2 A D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx R3 (x2 − 2x)dx Câu R45 Chọn mệnh đề mệnh đề sau: R A x dx =5 x + C B sin xdx = cos x + C 2x R R (2x + 1)3 e +C D (2x + 1)2 dx = + C C e2x dx = Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 47 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 125π 400π 250π 500π A B C D 9 Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001