Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn bởi các đường y = x2, y =[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu R2 Công thức sai? R A R sin x = − cos x + C B R cos x = sin x + C C a x = a x ln a + C D e x = e x + C √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H3) C (H1) D (H2) Câu √Cho hai√ số thực a, bthỏa√ mãn √a > b > Kết luận nào√sau sai? √ A a− < b− D ea > eb B a > b C a < b đúng? x B Hàm số đồng biến R D Hàm số nghịch biến R Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m ≤ C m > D m ≥ Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −15 D m = −2 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B C −1 Câu 10 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = −x4 + 2x2 + C y = x4 + √ x Câu 11 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D π D y = x4 + 2x2 + D x = −1 Câu 12 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D √ Câu 13 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a B C D 2 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(0; 0; 3) C A(1; 0; 3) D A(1; 2; 0) Trang 1/5 Mã đề 001 Câu 15 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(3; 7; 4) B C(1; 5; 3) C C(5; 9; 5) D C(−3; 1; 1) Câu 16 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 (m2 ) C (m ) D 3(m2 ) A (m2 ) B Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D √ Câu 18 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B ≤ m ≤ C m ≥ m ≤ D −1 ≤ m ≤ Câu 19 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z + z + C z · z + z + z + D |z|2 + 2|z| + (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i A B C D 21008 1 25 = + Khi phần ảo z bao nhiêu? Câu 21 Cho số phức z thỏa z + i (2 − i)2 A −31 B 31 C −17 D 17 Câu 20 Số phức z = Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 10i C −3 + 2i D −3 − 2i 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu 23 Cho số phức z thỏa mãn z = −i √ − 2i √ √ √ A |w| = B |w| = 85 C |w| = D |w| = 48 Câu 24 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B N(2; 3) C M(2; −3) D P(−2; 3) Câu 25 √ Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i A B 29 C D 13 Câu 26 Cho hàm số y = x −3x Tính y′ 2 A y′ = (2x − 3)5 x −3x B y′ = x −3x ln 2 C y′ = (2x − 3)5 x −3x ln D y′ = (x2 − 3x)5 x −3x ln √ x− x+2 Câu 27 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Re lnn x Câu 28 Tính tích phân I = dx, (n > 1) x 1 1 A I = n + B I = C I = D I = n−1 n+1 n Câu 29 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √ h √ √ √ 2π − π− 2π − 3 A B C D 12 12 Trang 2/5 Mã đề 001 Câu 30 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 47m B 49m C 50m D 48m √3 a2 b Câu 31 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A − B C D 3 Câu 32 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 11 C 8,9 D 33,2 R4 R4 R1 Câu 33 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A 18 B −1 C D −2 Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 35 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B Phần thực z số âm C z số ảo D z số thực không dương Câu 36 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 37 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = C P = D P = 2016 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A √ B C D 2 √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 41 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = B max T = C P = −2016 D P = 2016 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn số phức thuộc tập hợp sau đây? Trang 3/5 Mã đề 001 ! A 0; ! B ; +∞ ! C ; 4 Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B 3π ln + C ln + ! D ; cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π ln + 5 Câu 44 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = + 2t x = −1 + 2t x = − 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t A B C D z = − 5t z = − 5t z = −4 − 5t z = + 5t Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 25 27 23 B C D A 4 4 Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Câu 50 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − D R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001