Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2;−1), M(2; 4; 1), N([.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 B C(6; 21; 21) C C(20; 15; 7) D C(6; −17; 21) A C(8; ; 19) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x A y = −1+ B y = + ln ln 5 ln x x C y = +1− D y = − ln ln 5 ln ln Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B ln x > ln y C log x > log y D log x > log y a Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = cos x a B y = x4 + 3x2 + D y = x2 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2) Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π B √ C 3π D 3 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 600 C 1200 D 300 Câu 10 Cho a > a , Giá trị alog a bằng? √ A B C D Câu 11 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ Câu 12 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 ≤ m ≤ D −2 < m < Trang 1/5 Mã đề 001 Câu 13 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD √ có chiều cao chiều√cao tứ diện √ tiếp √ 2π 2.a2 π 3.a2 π 2.a B C D π 3.a2 A 3 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2) Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu 16 Đạo hàm hàm số y = log √2 3x − là: 6 2 B y′ = C y′ = A y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 17 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −21008 D −22016 Câu 18 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −7 − 7i B w = + 7i C w = −3 − 3i D w = − 3i Câu 19 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + D z + z + C |z|2 + 2|z| + Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B N(2; 3) C M(2; −3) D Q(−2; −3) Câu 21 Tìm số phức liên hợp số phức z = i(3i + 1) A z = − i B z = −3 + i C z = −3 − i D z = + i 1 25 = + Câu 22 Cho số phức z thỏa Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −17 B 31 C 17 D −31 Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 24 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −10 C 10 D −9 Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 12π(dm3 ) B 54π(dm3 ) C 6π(dm3 ) D 24π(dm3 ) Câu 27 Đồ thị hình bên đồ thị hàm số nào? 2x + −2x + 2x − A y = B y = C y = x+1 1−x x−1 D y = 2x + x+1 Trang 2/5 Mã đề 001 Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 2,075 C 8,9 D 33,2 Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x − 1)2 + (y + 1)2 + (z + 2)2 = √ 2 D (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1) + (y − 1) + (z − 2) = m Câu 30 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 B S = (−3; −1) ∪ (1; 2) A S = (−2; − ) ∪ ( ; 7) 4 19 19 C S = (−5; − ) ∪ ( ; 6) D S = (−2; − ) ∪ ( ; 6) 4 4 2x − Câu 31 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±1 B m = ±3 C m = ± D m = ±2 √3 a2 b Câu 32 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B C D − 3 √ Câu 33 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vng cân B, AC = 2a Thể tích√khối chóp S ABC √ √ 3 √ a 2a 3 a3 B a3 D C A 3 √ √ √ 42 √ Câu 34 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 36 Cho a, b, c số thực z = − + 2 A B a + b + c C a2 + b2 + c2 − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = (|z| − 2)2 C P = |z|2 − D P = (|z| − 4)2 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 Trang 3/5 Mã đề 001 √ A B C √ D √ Câu 41 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ C P = D P = A P = B P = 2 Câu 42 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ A B z số thực Giá trị lớn + z2 C √ D 2 Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x A sin xdx = cos x + C B e2x dx = +C R R (2x + 1)3 C (2x + 1)2 dx = + C D x dx =5 x + C Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 9a3 B 4a3 C 3a3 D 6a3 Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > C m < −2 D m > m < − Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 14 B R = 15 C R = D R = Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 27 29 A B C D 4 4 Câu 50 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080251 đồng C 36080254 đồng D 36080253 đồng Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001