Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số y = ( √ 3 − 1) x có dạng nào trong các hình H1, H2, H3, H4[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H4) D (H3) Câu R2 Công thức sai? A R a x = a x ln a + C C sin x = − cos x + C R B R cos x = sin x + C D e x = e x + C Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 300 C 360 D 450 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(6; 21; 21) A C(6; −17; 21) B C(20; 15; 7) C C(8; ; 19) Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ a 3a 5a 2a B √ C D A √ 5 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ≥ C m ∈ (0; 2) D m ∈ (−1; 2) A −1 < m < Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = C yCD = −2 D yCD = 36 Câu 10 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(1; 5; 3) B C(3; 7; 4) C C(−3; 1; 1) D C(5; 9; 5) Câu 12 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(0; 2; 3) C A(0; 0; 3) D A(1; 2; 0) Câu 13 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (−∞; 2] D (1; 2) Trang 1/5 Mã đề 001 Câu 14 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại có chiều cao chiều cao tứ diện √ √ tiếp tam giác BCD √ √ 2π 2.a2 π 3.a2 π 2.a2 B C π 3.a A D 3 Câu 15 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , −1 D m , √ x x Câu 16 Tìm nghiệm phương trình = ( 3) A x = B x = C x = −1 D x = Câu 17 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 A |z| = C |z| = B |z| = 34 D |z| = 34 3 z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C D 13 Câu 19 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = + i C P = D P = 2i Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A Q(−2; −3) B M(2; −3) C P(−2; 3) D N(2; 3) 2(1 + 2i) Câu 21 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số phức C Mô-đun số phức z số thực dương B Mô-đun số phức z số thực D Mô-đun số phức z số thực không âm Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D !2016 !2018 1−i 1+i Câu 24 Số phức z = + 1−i 1+i A B + i C −2 D Câu 25 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C −21008 D 21008 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 4π C 2π D 8π Câu 27 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 5 20 5πa3 A V = a B V = πa C V = πa D V = 6 Câu 28 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 2a2 b 4a2 b 4a2 b A √ B √ C √ D √ 3π 3π 2π 2π Trang 2/5 Mã đề 001 Câu 29 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = 2x4 + 4x2 + C y = x4 − 2x2 − D y = −x4 − 2x2 − Câu 30 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ 2π − 3 π− 2π − 3 B C D A 12 12 Câu 31 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π A V = B V = C V = D V = 2 2x x 2x Câu 32 Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 A B C −6 D x Câu 33 Họ nguyên hàm hàm số y = (x − 1)e là: A (x − 1)e x + C B (x − 2)e x + C C xe x + C D xe x−1 + C Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp sau đây? ! ! ! 9 B ; C ; +∞ D ; A 0; 4 4 Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm R Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ B P = 34 + C P = 26 D P = A P = + √ √ √ 42 √ Câu 37 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 √ Câu 38 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 2 Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 | + |z1 − z2 |2 A 18 B C D √ Câu 40 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Trang 3/5 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ D C 2 Câu 42 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A −21008 B 22016 C −22016 D 21008 Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π B 6π C D A 5 Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B ln C − ln D x2 + mx + đạt cực tiểu điểm x = x+1 C m = −1 D Khơng có m Câu 45 Tìm tất giá trị tham số m để hàm số y = A m = B m = Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 47 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 48 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln D y′ = x+cos3x ln √ Câu 49 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình vơ nghiệm Câu 50 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = B R = 15 C R = 14 D R = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001