Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là trục đối xứng? A y = x3 − 2x[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − C y = x3 D y = x2 − 2x + Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 5; 0) C (0; −5; 0) D (0; 0; 5) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux > thìy < −15 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C ln x > ln y D log x > log y a Câu Số nghiệm phương trình + 5.3 − = A B C x a x D Câu Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x C loga x2 = 2loga x D loga2 x = loga x ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ac < B bc > C ab < D ad > Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; 2) C S = [ -ln3; +∞) D S = (−∞; ln3) Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D ′′ Câu 10 Cho hàm số f (x) thỏa mãn f (x) = 12x + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −3 B f (−1) = −5 C f (−1) = D f (−1) = −1 Câu 11 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể√tích khối nón √ 2π.a3 4π 2.a3 π.a3 π 2.a3 A B C D 3 3 Câu 12 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD có chiều cao chiều√cao tứ diện √ tiếp √ √ 2π 2.a π 2.a2 π 3.a2 A B π 3.a C D 3 Câu 13 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + (ln b)2 B ln( ) = b ln b C ln(ab) = ln a ln b D ln(ab ) = ln a + ln b Trang 1/5 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x − y + 2z = Câu 15 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(1; 1; 2) D I(0; 1; −2) Câu 16 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D !2016 !2018 1+i 1−i Câu 17 Số phức z = + 1−i 1+i A + i B C D −2 (1 + i)(2 + i) (1 − i)(2 − i) Câu 18 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B z = z C |z| = D z = z Câu 19 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 B (1 + i)2018 = 21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i − 2i (1 − i)(2 + i) + Câu 20 Phần thực số phức z = 2−i + 3i 11 29 11 29 A − B − C D 13 13 13 13 z2 Câu 21 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C D 13 Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực phần ảo 2i C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo 2(1 + 2i) Câu 23 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D 2017 + 2i + i Câu 24 Số phức z = có tổng phần thực phần ảo 2−i A B C -1 D 2 4(−3 + i) (3 − i) Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = 85 B |w| = C |w| = D |w| = 48 Câu 26 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 49m B 48m C 50m D 47m Câu 27 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 + − 4x + C x3 − x4 + 2x D 2x3 − 4x4 4 3x − Câu 28 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (0; 1] ∪ [2; +∞) B S = (1; 2) C S = (−∞; 1] ∪ [2; +∞) D S = [1; 2] Trang 2/5 Mã đề 001 Câu 29 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 46.538667 đồng C 45.188.656 đồng D 43.091.358 đồng √3 a2 b ) Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( c A B C − D 3 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (4; −6; 8) B (−2; 3; 5) C (−2; 2; 6) D (1; −2; 7) y−6 z−1 x−3 = = Câu 32 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 = B = = A = −3 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −1 −3 −1 Câu 33 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B (3; +∞) C [1; +∞) D (1; +∞) Câu 34 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = C P = 2016 D max T = √ Câu 35 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A < |z| < B ≤ |z| ≤ C |z| > D |z| < 2 2 Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 C P = (|z| − 4)2 D P = |z|2 − A P = (|z| − 2)2 B P = |z|2 − Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D Câu 38 Cho số phức z (không phải số thực, số ảo) thỏa mãn + z + z2 số thực − z + z2 Khi mệnh đề sau đúng? 3 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 40 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 2016 2015 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z +z +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = −2016 C P = 2016 D P = Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = + C P = 26 D P = 34 + Trang 3/5 Mã đề 001 Câu 43 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 R3 R3 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx D (x2 − 2x)dx + 1 C R2 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 45 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 46 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y x2 + mx + đạt cực tiểu điểm x = x+1 C m = D Khơng có m Câu 47 Tìm tất giá trị tham số m để hàm số y = A m = B m = −1 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 15 B R = C R = D R = 14 Câu 49 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 30 3a 3a A B C D 10 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001