Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Hàm số nào sau đây không có cực trị? A y = x3 − 6x2 + 12x − 7 B y = x4 +[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − C y = x2 Câu Tính I = R1 √3 B y = x4 + 3x2 + D y = cos x 7x + 1dx A I = 60 28 B I = 21 C I = 20 D I = 45 28 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = −2 C m = D m = 13 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = tan x B y = x2 D y = x4 + 3x2 + √ ′ Câu 6.√Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA 3a Thể tích khối lăng trụ cho là: = √ A 3a3 B 3a3 C 3a3 D a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 0; 5) C (0; −5; 0) D (0; 1; 0) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = − A y = ln ln 5 ln ln x x C y = + D y = +1− ln 5 ln ln R5 dx Câu Biết = ln T Giá trị T là: 2x − √ B T = C T = D T = 81 A T = Câu 10 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 B ( ; +∞) C (0; 1) D (1; +∞) A (0; ) 4 Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y + 2z = C (P) : x − y − 2z = D (P) : x − 2y − = Câu 14 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m > C m ≥ D m ≥ −1 Câu 15 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab2 ) = ln a + ln b b ln b C ln(ab2 ) = ln a + (ln b)2 D ln(ab) = ln a ln b 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 16 Cho hàm số y = Câu 17 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = 2k C A = D A = Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực phần ảo 2i B Phần thực −3 phần ảo là−2 C Phần thực là−3 phần ảo −2i D Phần thực là3 phần ảo (1 + i)(2 − i) √ + 3i √ B |z| = C |z| = Câu 19 Mô-đun số phức z = A |z| = D |z| = Câu 20 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = !2016 !2018 1−i 1+i Câu 21 Số phức z = + 1−i 1+i A + i B −2 C D Câu 22 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 B −22016 C 21008 D −21008 + Câu 23 Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ = 6z − 25i √ mô-đun số phức w A 13 B C 29 D z2 Câu 24 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C D 13 Câu 25 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B C 21008 D Câu 26 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 A 3a B 3a C 6a D Trang 2/5 Mã đề 001 x3 Câu 27 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m < −3 B m ≤ −2 C m ≥ −8 D m ≤ Câu 28 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B (3; +∞) C (1; +∞) D [1; +∞) Câu 29 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 46.538667 đồng C 45.188.656 đồng D 43.091.358 đồng √3 a2 b Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B C − D 3 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 8π B 4π C 2π D 3π Câu 32 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 1)e x + C B (x − 2)e x + C C xe x−1 + C D xe x + C y−6 z−1 x−3 = = Câu 33 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 A = = B = = −1 −3 −3 y−1 z−1 x y−1 z−1 x = = D = = C −1 −3 −1 Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = −1 C A = D A = Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 10 C D 15 Câu 37 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = 34 + C P = D P = + z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D √ √ √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| √ A P = B P = 2016 C max T = D P = −2016 Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = (|z| − 2)2 C P = |z|2 − D P = |z|2 − Câu 43 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 10π C 6π D 8π 3x cắt đường thẳng y = x + m Câu 44 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = D m = −2 Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B m < C −4 ≤ m ≤ −1 D −3 ≤ m ≤ Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (3; 5) D (1; 5) Câu 48 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx 1 R3 R2 R3 |x − 2x|dx = |x − 2x|dx − D 2 |x2 − 2x|dx = − R3 |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 49 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = −2x4 + 4x2 A D = (−∞; −1] ∪ (1; +∞) 3x + x−1 B D = (−∞; 0) C D = (−1; 4) D D = (1; +∞) r Câu 50 Tìm tập xác định D hàm số y = D y = x3 − 3x2 log2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001